#include <bits/stdc++.h> #include "template/debug.hpp" using namespace std; template<class T = int> struct matrix : vector<vector<T>> { matrix(size_t h, size_t w, T init = T()) : vector<vector<T>> (h, vector<T> (w, init)) {} inline T& operator()(size_t i, size_t j) { return (*this)[i][j]; } }; template<class T = int, class C = vector<T>> struct prime_sieve : C { prime_sieve(size_t max) : is_prime(max+1, true) { is_prime[0] = is_prime[1] = false; for(size_t p=2; p<=max; p++) if(is_prime[p]) { for(size_t i=p*p; i<=max; i+=p) is_prime[i] = false; this->emplace_back(p); } } bool operator()(size_t index) { return is_prime[index]; } private: vector<bool> is_prime; }; template<class T> struct Iterator { const T* p; const T& operator*() { return *p; } Iterator& operator++() { ++p; return *this; } bool operator!=(const Iterator& v) { return p != v.p; } ptrdiff_t operator-(const Iterator& v) { return p - v.p; } }; template<class T> ptrdiff_t distance(Iterator<T>& a, Iterator<T>& b) { return b - a; }; struct MyString { const char* s; Iterator<char> begin() { return { s }; } Iterator<char> end() { return { s + strlen(s) }; } }; struct MyStructure0 { MyStructure0(int a, int b, int c, int d) : a(a), b(b), c(c), d(d) {} vector<int> _debug() const { return { 0, a + b + c + d, a * b * c * d }; } private: int a, b, c, d; }; struct MyStructure1 { MyStructure1(int a, int b, int c, int d) : a(a), b(b), c(c), d(d) {} friend vector<int> _debug(const MyStructure1 &s); private: int a, b, c, d; }; vector<int> _debug(const MyStructure1 &s) { return { 1, s.a + s.b + s.c + s.d, s.a * s.b * s.c * s.d }; } // template<unsigned long N> debugger::debug_t _debug(bitset<N> &bist) { // return bist.to_string(); // } string _debug(bitset<10UL> bist) { return bist.to_string(); } signed main() { debug('a', "abcdefg", string("abcdefg")); debug(1, 1U, 1L, 1UL, 1LL, 1ULL, 1.0, 1.0L); vector<int> vec_1d = { 1, 2, 3, 4 }; debug(vec_1d); vector<vector<int>> vec_2d = { { 1, 2, 3, 4 }, { 1, 3, 5 }, { 1, 4, 10 } }; debug(vec_2d); matrix<int> matrix1(10, 5, 0); debug(matrix1); matrix matrix2(2, 3, 0.0L); debug(matrix2); vector vector_string = { "string", "abcdefg" }; debug(vector_string); set<int> set_int = { 0, 3, 6, 1, 2, 3, 0 }; debug(set_int); unordered_set<int> unord_set_int = { 0, 3, 6, 1, 2, 3, 0 }; debug(unord_set_int); map<int,int> map__int_int = { { 0, 3 }, { 6, 1 }, { 2, 3 } }; debug(map__int_int); // unordered_map<int,int> unord_map__int_int = { { 0, 3 }, { 6, 1 }, { 2, 3 } }; // debug(unord_map__int_int); debug(prime_sieve(100)); // debug(MyString{"abcdefg"}); debug(string{string{"abcdefg"}}); static_assert(!uni::internal::is_loggable_v<int>); static_assert(!uni::internal::is_loggable_v<vector<int>>); static_assert(uni::internal::is_loggable_v<MyStructure0>); static_assert(uni::internal::is_loggable_v<MyStructure1>); MyStructure0 my_structure0 = { 1, 2, 3, 4 }; debug(my_structure0); MyStructure1 my_structure1 = { 1, 2, 3, 4 }; debug(my_structure1); pair<int,MyStructure0> pair__my_structure0 = { 0, { 1, 2, 3, 4 } }; debug(pair__my_structure0); pair<int,MyStructure1> pair__my_structure1 = { 0, { 1, 2, 3, 4 } }; debug(pair__my_structure1); vector<pair<int,MyStructure0>> vector_pair__my_structure0 = { { 0, { 1, 2, 3, 4 } }, { 1, { 1, 2, 3, 4 } } }; debug(vector_pair__my_structure0); vector<pair<int,MyStructure1>> vector_pair__my_structure1 = { { 0, { 1, 2, 3, 4 } }, { 1, { 1, 2, 3, 4 } } }; debug(vector_pair__my_structure1); map<vector<string>,set<pair<int,tuple<string,char,unsigned>>>> complexed = { { { "str0", "str1" }, { { 1, { "str2", 'c', 1124 } } } } }; // static_assert(!uni::internal::wrapping_type_of<map<vector<string>,, std::basic_string>); debug(complexed); debug( map<vector<string>,set<pair<int,tuple<string,char,unsigned>>>> { { { "str0", "str1" }, { { 1, { "str2", 'c', 1124 } } } } } ); std::queue<int> que; que.push(3), que.push(1), que.push(4), que.push(1); debug(que); std::stack<int> stk; stk.push(3), stk.push(1), stk.push(4), stk.push(1); debug(stk); std::priority_queue<int> prique; prique.push(3), prique.push(1), prique.push(4), prique.push(1); debug(prique); return 0; }
#line 1 "debugger/test.cpp" #include <bits/stdc++.h> #line 2 "template/debug.hpp" #ifdef LOCAL_JUDGE #define DEBUGGER_ENABLED #define DEBUGGER_COLORED_OUTPUT 1 #endif #line 2 "debugger/debug.hpp" #line 7 "debugger/debug.hpp" #include <string_view> #line 23 "debugger/debug.hpp" #include <ranges> #include <concepts> #include <type_traits> #line 2 "numeric/int128.hpp" #line 9 "numeric/int128.hpp" #line 2 "snippet/internal/types.hpp" #line 4 "snippet/internal/types.hpp" namespace uni { using i16 = std::int16_t; using u16 = std::uint16_t; using i32 = std::int32_t; using u32 = std::uint32_t; using i64 = std::int64_t; using u64 = std::uint64_t; #ifdef __GNUC__ using i128 = __int128_t; using u128 = __uint128_t; using f128 = __float128; #endif using uint = unsigned; using ll = long long; using ull = unsigned long long; using ld = long double; } // namespace uni #line 2 "snippet/iterations.hpp" #line 2 "macro/overload.hpp" #define $OVERLOAD2(arg0, arg1, cmd, ...) cmd #define $OVERLOAD3(arg0, arg1, arg2, cmd, ...) cmd #define $OVERLOAD4(arg0, arg1, arg2, arg3, cmd, ...) cmd #define $OVERLOAD5(arg0, arg1, arg2, arg3, arg4, cmd, ...) cmd #define $OVERLOAD6(arg0, arg1, arg2, arg3, arg4, arg5, cmd, ...) cmd #line 2 "macro/basic.hpp" #define TO_STRING_AUX(x) #x #define TO_STRING(x) TO_STRING_AUX(x) #define CONCAT_AUX(x, y) x##y #define CONCAT(x, y) CONCAT_AUX(x, y) #define UNPAREN_AUX(...) __VA_ARGS__ #define UNPAREN(...) __VA_ARGS__ #line 6 "snippet/iterations.hpp" #define LOOP(n) REPI(CONCAT(_$, __COUNTER__), n) #define REPI(i,n) for(std::remove_cvref_t<decltype(n)> i=0, CONCAT(i, $)=(n); i<CONCAT(i, $); ++i) #define REPF(i,l,r) for(std::common_type_t<std::remove_cvref_t<decltype(l)>,std::remove_cvref_t<decltype(r)>> i=(l), CONCAT(i, $)=(r); i<CONCAT(i, $); ++i) #define REPIS(i,l,r,s) for(std::common_type_t<std::remove_cvref_t<decltype(l)>,std::remove_cvref_t<decltype(r)>,std::remove_cvref_t<decltype(s)>> i=(l), CONCAT(i, $)=(r); i<CONCAT(i, $); i+=(s)) #define REPR(i,n) for(auto i=(n); --i>=0;) #define REPB(i,l,r) for(std::common_type_t<std::remove_cvref_t<decltype(l)>,std::remove_cvref_t<decltype(r)>> i=(r), CONCAT(i, $)=(l); --i>=CONCAT(i, $);) #define REPRS(i,l,r,s) for(std::common_type_t<std::remove_cvref_t<decltype(l)>,std::remove_cvref_t<decltype(r)>,std::remove_cvref_t<decltype(s)>> i=(l)+((r)-(l)-1)/(s)*(s), CONCAT(i, $)=(l); i>=CONCAT(i, $); (i-=(s))) #define REP(...) $OVERLOAD4(__VA_ARGS__, REPIS, REPF, REPI, LOOP)(__VA_ARGS__) #define REPD(...) $OVERLOAD4(__VA_ARGS__, REPRS, REPB, REPR)(__VA_ARGS__) #define FORO(i,n) for(int i=0, CONCAT(i, $)=static_cast<int>(n); i<=CONCAT(i, $); ++i) #define FORI(i,l,r) for(std::common_type_t<std::remove_cvref_t<decltype(l)>,std::remove_cvref_t<decltype(r)>> i=(l), CONCAT(i, $)=(r); i<=CONCAT(i, $); ++i) #define FORIS(i,l,r,s) for(std::common_type_t<std::remove_cvref_t<decltype(l)>,std::remove_cvref_t<decltype(r)>,std::remove_cvref_t<decltype(s)>> i=(l), CONCAT(i, $)=(r); i<=CONCAT(i, $); i+=(s)) #define FORRO(i,n) for(auto i=(n); i>=0; --i) #define FORR(i,l,r) for(std::common_type_t<std::remove_cvref_t<decltype(l)>,std::remove_cvref_t<decltype(r)>> i=(r), CONCAT(i, $)=(l); i>=CONCAT(i, $); --i) #define FORRS(i,l,r,s) for(std::common_type_t<std::remove_cvref_t<decltype(l)>,std::remove_cvref_t<decltype(r)>,std::remove_cvref_t<decltype(s)>> i=(l)+((r)-(l))/(s)*(s), CONCAT(i, $)=(l); i>=CONCAT(i, $); i-=(s)) #define FOR(...) $OVERLOAD4(__VA_ARGS__, FORIS, FORI, FORO)(__VA_ARGS__) #define FORD(...) $OVERLOAD4(__VA_ARGS__, FORRS, FORR, FORRO)(__VA_ARGS__) #define ITR1(e0,v) for(const auto &e0 : (v)) #define ITRP1(e0,v) for(auto e0 : (v)) #define ITRR1(e0,v) for(auto &e0 : (v)) #define ITR2(e0,e1,v) for(const auto [e0, e1] : (v)) #define ITRP2(e0,e1,v) for(auto [e0, e1] : (v)) #define ITRR2(e0,e1,v) for(auto &[e0, e1] : (v)) #define ITR3(e0,e1,e2,v) for(const auto [e0, e1, e2] : (v)) #define ITRP3(e0,e1,e2,v) for(auto [e0, e1, e2] : (v)) #define ITRR3(e0,e1,e2,v) for(auto &[e0, e1, e2] : (v)) #define ITR4(e0,e1,e2,e3,v) for(const auto [e0, e1, e2, e3] : (v)) #define ITRP4(e0,e1,e2,e3,v) for(auto [e0, e1, e2, e3] : (v)) #define ITRR4(e0,e1,e2,e3,v) for(auto &[e0, e1, e2, e3] : (v)) #define ITR5(e0,e1,e2,e3,e4,v) for(const auto [e0, e1, e2, e3, e4] : (v)) #define ITRP5(e0,e1,e2,e3,e4,v) for(auto [e0, e1, e2, e3, e4] : (v)) #define ITRR5(e0,e1,e2,e3,e4,v) for(auto &[e0, e1, e2, e3, e4] : (v)) #define ITR(...) $OVERLOAD6(__VA_ARGS__, ITR5, ITR4, ITR3, ITR2, ITR1)(__VA_ARGS__) #define ITRP(...) $OVERLOAD6(__VA_ARGS__, ITRP5, ITRP4, ITRP3, ITRP2, ITRP1)(__VA_ARGS__) #define ITRR(...) $OVERLOAD6(__VA_ARGS__, ITRR5, ITRR4, ITRR3, ITRR2, ITRR1)(__VA_ARGS__) #line 12 "numeric/int128.hpp" #line 2 "internal/dev_env.hpp" #ifdef LOCAL_JUDGE inline constexpr bool DEV_ENV = true; inline constexpr bool NO_EXCEPT = false; #else inline constexpr bool DEV_ENV = false; inline constexpr bool NO_EXCEPT = true; #endif // LOCAL_JUDGE #if __cplusplus >= 202100L #define CPP20 true #define CPP23 true #elif __cplusplus >= 202002L #define CPP20 true #define CPP23 false #else #define CPP20 false #define CPP23 false #endif #line 14 "numeric/int128.hpp" namespace std { template<class C, class S> auto& operator>>(std::basic_istream<C, S>& in, uni::i128& v) noexcept(NO_EXCEPT) { std::string str; in >> str; v = 0; bool negative = (str[0] == '-'); REP(d, std::ranges::next(str.begin(), negative), str.end()) { assert(std::isdigit(*d)); v = v * 10 + *d - '0'; } if(negative) v *= -1; return in; } template<class C, class S> auto& operator>>(std::basic_istream<C, S>& in, uni::u128& v) noexcept(NO_EXCEPT) { std::string str; in >> str; v = 0U; assert(str[0] != '-'); REP(d, str.begin(), str.end()) { assert(std::isdigit(*d)); v = v * 10U + *d - '0'; } return in; } template<class C, class S> auto& operator<<(std::basic_ostream<C, S>& out, uni::i128 v) noexcept(NO_EXCEPT) { if(v == 0) return out << 0; if(v < 0) out << '-', v *= -1; std::string str; while(v > 0) str += static_cast<char>(v%10) + '0', v /= 10; std::reverse(str.begin(), str.end()); return out << str; } template<class C, class S> auto& operator<<(std::basic_ostream<C, S>& out, uni::u128 v) noexcept(NO_EXCEPT) { if(v == 0) return out << 0U; std::string str; while(v > 0) str += static_cast<char>(v%10U) + '0', v /= 10U; std::reverse(str.begin(), str.end()); return out << str; } } #line 29 "debugger/debug.hpp" #line 2 "internal/type_traits.hpp" #line 9 "internal/type_traits.hpp" #line 12 "internal/type_traits.hpp" namespace uni { namespace internal { template<class... Ts> struct tuple_or_pair { using type = std::tuple<Ts...>; }; template<class T, class U> struct tuple_or_pair<T,U> { using type = std::pair<T, U>; }; template <class... Ts> using tuple_or_pair_t = typename tuple_or_pair<Ts...>::type; template<class T> constexpr std::underlying_type_t<T> to_underlying(const T& v) noexcept(NO_EXCEPT) { return static_cast<std::underlying_type_t<T>>(v); } template<class T, class... Ts> using are_same = std::conjunction<std::is_same<T, Ts>...>; template<class T, class... Ts> inline constexpr bool are_same_v = are_same<T, Ts...>::value; template<class T, class... Ts> using is_same_as_any_of = std::disjunction<std::is_same<T, Ts>...>; template<class T, class... Ts> inline constexpr bool is_same_as_any_of_v = is_same_as_any_of<T, Ts...>::value; template<class T, class... Ts> concept same_as_any_of = is_same_as_any_of_v<T, Ts...>; template<class Base, class... Derived> using is_base_of_all = std::conjunction<std::is_base_of<Base, Derived>...>; template<class Base, class... Derived> inline constexpr bool is_base_of_all_v = is_base_of_all<Base, Derived...>::value; template<class Base, class... Derived> using is_base_of_any = std::disjunction<std::is_base_of<Base, Derived>...>; template<class Base, class... Derived> inline constexpr bool is_base_of_any_v = is_base_of_any<Base, Derived...>::value; template<class T> struct remove_cvref { using type = typename std::remove_cv_t<std::remove_reference_t<T>>; }; template<class T> using remove_cvref_t = typename remove_cvref<T>::type; template<class T> struct literal_operator { static constexpr const char* value = ""; }; template<> struct literal_operator<unsigned> { static constexpr const char* value = "U"; }; template<> struct literal_operator<long> { static constexpr const char* value = "L"; }; template<> struct literal_operator<unsigned long> { static constexpr const char* value = "UL"; }; template<> struct literal_operator<long long> { static constexpr const char* value = "LL"; }; template<> struct literal_operator<unsigned long long> { static constexpr const char* value = "ULL"; }; template<> struct literal_operator<float> { static constexpr const char* value = "F"; }; template<> struct literal_operator<double> { static constexpr const char* value = "D"; }; template<> struct literal_operator<long double> { static constexpr const char* value = "LD"; }; #ifdef __SIZEOF_INT128__ template<> struct literal_operator<__int128_t> { static constexpr const char* value = "LLL"; }; template<> struct literal_operator<__uint128_t> { static constexpr const char* value = "ULLL"; }; #endif template<class T> inline constexpr auto literal_operator_v = literal_operator<T>::value; template <std::size_t N, typename... Types> struct nth_type {}; template <class Head, class... Tail> struct nth_type<0, Head, Tail...> { using type = Head; }; template <std::size_t N, class Head, class... Tail> struct nth_type<N, Head, Tail...> : public nth_type<N - 1, Tail...> {}; template <std::size_t N, typename... Types> using nth_type_t = typename nth_type<N, Types...>::type; template<template <class...> class, class> struct is_template_of : std::false_type {}; template<template <class...> class Template, class... Args> struct is_template_of<Template, Template<Args...>> : std::true_type {}; template<template <class...> class Template, class Type> inline constexpr bool is_template_of_v = is_template_of<Template, Type>::value; template<class Type, template <class...> class Template> concept substituted_from = is_template_of_v<Template, Type>; template<template <class...> class Base, class Derived> struct _is_basic_tempalte_of { template<class... Ts> static constexpr std::true_type test(const Base<Ts...> *); static constexpr std::false_type test(...); using type = decltype(test(std::declval<Derived*>())); }; template<template <class...> class Base, class Derived> using is_basic_tempalte_of = _is_basic_tempalte_of<Base, Derived>::type; template<template <class...> class Base, class Derived> inline constexpr bool is_basic_tempalte_of_v = is_basic_tempalte_of<Base, Derived>::value; template<class Derived, template <class...> class Base> concept derived_from_template = is_basic_tempalte_of_v<Base, Derived>; template<class T> struct is_loggable { template<class U> static constexpr auto External(U &&v) -> decltype(_debug(v), std::true_type()); static constexpr std::false_type External(...); template<class U> static constexpr auto Member(U &&v) -> decltype(v._debug(), std::true_type()); static constexpr std::false_type Member(...); static constexpr bool value = ( decltype(External(std::declval<T>()))::value || decltype(Member(std::declval<T>()))::value ); }; template<class T> inline constexpr auto is_loggable_v = is_loggable<T>::value; template<class T> concept loggable = is_loggable_v<T>; template<class T> struct _has_iterator { template<class U> static constexpr auto ADL(U &&v) -> decltype(begin(v), end(v), std::true_type()); static constexpr std::false_type ADL(...); template<class U> static constexpr auto STL(U &&v) -> decltype(std::begin(v), std::end(v), std::true_type()); static constexpr std::false_type STL(...); template<class U> static constexpr auto Member(U &&v) -> decltype(v.begin(), v.end(), std::true_type()); static constexpr std::false_type Member(...); }; template<class T> struct has_iterator { struct ADL : decltype(_has_iterator<T>::ADL(std::declval<T>())) {}; struct STL : decltype(_has_iterator<T>::STL(std::declval<T>())) {}; struct Member : decltype(_has_iterator<T>::Member(std::declval<T>())) {}; static constexpr auto adl_v = ADL::value; static constexpr auto stl_v = STL::value; static constexpr auto member_v = Member::value; }; template<class T> struct is_iterable { static constexpr bool value = has_iterator<T>::adl_v || has_iterator<T>::stl_v || has_iterator<T>::member_v; }; template<class T> inline constexpr auto is_iterable_v = is_iterable<T>::value; template<class T> concept iterable = is_iterable_v<T>; namespace iterator_resolver { template<class T> inline constexpr auto begin(T&& v) noexcept(NO_EXCEPT) { static_assert(is_iterable_v<T>); if constexpr(has_iterator<T>::member_v) { return v.begin(); } else { // ADL using std::begin; return begin(std::forward<T>(v)); } } template<class T> inline constexpr auto end(T&& v) noexcept(NO_EXCEPT) { static_assert(is_iterable_v<T>); if constexpr(has_iterator<T>::member_v) { return v.end(); } else { // ADL using std::end; return end(std::forward<T>(v)); } } }; template<class C> using iterator_t = decltype(iterator_resolver::begin(std::declval<C&>())); template<class C> using container_size_t = decltype(std::size(std::declval<C&>())); template<bool Const, class T> using maybe_const_t = std::conditional_t<Const, const T, T>; template<class T> using with_ref = T&; template<class T> concept can_reference = requires { typename with_ref<T>; }; } // namespace internal } // namespace uni #line 2 "internal/concepts.hpp" #line 9 "internal/concepts.hpp" namespace uni { namespace internal { template<class R, class T> concept convertibel_range = std::convertible_to<std::ranges::range_value_t<R>, T>; template<class T, class V> concept item_or_convertible_range = std::convertible_to<T, V> || convertibel_range<T, V>; template<class Structure> concept available = requires () { typename Structure; }; template< template<class...> class Structure, class... TemplateParameters > concept available_with = available<Structure<TemplateParameters...>>; template<class T> concept arithmetic = std::is_arithmetic_v<T>; template<class T> concept pointer = std::is_pointer_v<T>; template<class T> concept structural = std::is_class_v<T>; template<class Large, class Small> concept has_double_digits_of = (std::numeric_limits<Large>::digits == 2 * std::numeric_limits<Small>::digits); template<class Large, class Small> concept has_more_digits_than = (std::numeric_limits<Large>::digits > std::numeric_limits<Small>::digits); template<class Large, class Small> concept has_or_more_digits_than = (std::numeric_limits<Large>::digits >= std::numeric_limits<Small>::digits); template<class T> concept has_static_zero = requires { T::zero; }; template<class T> concept has_static_one = requires { T::one; }; template<class L, class R = L> concept weakly_bitand_calcurable = requires (L lhs, R rhs) { lhs & rhs; }; template<class L, class R = L> concept weakly_bitor_calcurable = requires (L lhs, R rhs) { lhs | rhs; }; template<class L, class R = L> concept weakly_bitxor_calcurable = requires (L lhs, R rhs) { lhs ^ rhs; }; template<class L, class R = L> concept weakly_addable = requires (L lhs, R rhs) { lhs + rhs; }; template<class L, class R = L> concept weakly_subtractable = requires (L lhs, R rhs) { lhs - rhs; }; template<class L, class R = L> concept weakly_multipliable = requires (L lhs, R rhs) { lhs * rhs; }; template<class L, class R = L> concept weakly_divisable = requires (L lhs, R rhs) { lhs / rhs; }; template<class L, class R = L> concept weakly_remainder_calculable = requires (L lhs, R rhs) { lhs % rhs; }; template<class L, class R = L> concept weakly_bitand_assignable = requires (L lhs, R rhs) { lhs += rhs; }; template<class L, class R = L> concept weakly_bitor_assignable = requires (L lhs, R rhs) { lhs |= rhs; }; template<class L, class R = L> concept weakly_bitxor_assignable = requires (L lhs, R rhs) { lhs ^= rhs; }; template<class L, class R = L> concept weakly_addition_assignable = requires (L lhs, R rhs) { lhs += rhs; }; template<class L, class R = L> concept weakly_subtraction_assignable = requires (L lhs, R rhs) { lhs -= rhs; }; template<class L, class R = L> concept weakly_multipliation_assignalbe = requires (L lhs, R rhs) { lhs *= rhs; }; template<class L, class R = L> concept weakly_division_assignable = requires (L lhs, R rhs) { lhs /= rhs; }; template<class L, class R = L> concept weakly_remainder_assignable = requires (L lhs, R rhs) { lhs /= rhs; }; template<class L, class R = L> concept bitand_calculable = weakly_bitand_calcurable<L, R> && weakly_bitand_calcurable<std::invoke_result_t<std::bit_and<>&, L, R>, R> && weakly_bitand_calcurable<L, std::invoke_result_t<std::bit_and<>&, L, R>> && weakly_bitand_calcurable<std::invoke_result_t<std::bit_and<>&, L, R>, std::invoke_result_t<std::bit_and<>&, L, R>>; template<class L, class R = L> concept bitor_calculable = weakly_bitor_calcurable<L, R> && weakly_bitor_calcurable<std::invoke_result_t<std::bit_or<>&, L, R>, R> && weakly_bitor_calcurable<L, std::invoke_result_t<std::bit_or<>&, L, R>> && weakly_bitor_calcurable<std::invoke_result_t<std::bit_or<>&, L, R>, std::invoke_result_t<std::bit_or<>&, L, R>>; template<class L, class R = L> concept bitxor_calculable = weakly_bitxor_calcurable<L, R> && weakly_bitxor_calcurable<std::invoke_result_t<std::bit_xor<>&, L, R>, R> && weakly_bitxor_calcurable<L, std::invoke_result_t<std::bit_xor<>&, L, R>> && weakly_bitxor_calcurable<std::invoke_result_t<std::bit_xor<>&, L, R>, std::invoke_result_t<std::bit_xor<>&, L, R>>; template<class L, class R = L> concept addable = weakly_addable<L, R> && weakly_addable<std::invoke_result_t<std::plus<>&, L, R>, R> && weakly_addable<L, std::invoke_result_t<std::plus<>&, L, R>> && weakly_addable<std::invoke_result_t<std::plus<>&, L, R>, std::invoke_result_t<std::plus<>&, L, R>>; template<class L, class R = L> concept subtractable = weakly_subtractable<L, R> && weakly_subtractable<std::invoke_result_t<std::minus<>&, L, R>, R> && weakly_subtractable<L, std::invoke_result_t<std::minus<>&, L, R>> && weakly_subtractable<std::invoke_result_t<std::minus<>&, L, R>, std::invoke_result_t<std::minus<>&, L, R>>; template<class L, class R = L> concept multipliable = weakly_multipliable<L, R> && weakly_multipliable<std::invoke_result_t<std::multiplies<>&, L, R>, R> && weakly_multipliable<L, std::invoke_result_t<std::multiplies<>&, L, R>> && weakly_multipliable<std::invoke_result_t<std::multiplies<>&, L, R>, std::invoke_result_t<std::multiplies<>&, L, R>>; template<class L, class R = L> concept divisable = weakly_divisable<L, R> && weakly_divisable<std::invoke_result_t<std::divides<>&, L, R>, R> && weakly_divisable<L, std::invoke_result_t<std::divides<>&, L, R>> && weakly_divisable<std::invoke_result_t<std::divides<>&, L, R>, std::invoke_result_t<std::divides<>&, L, R>>; template<class L, class R = L> concept remainder_calculable = weakly_remainder_calculable<L, R> && weakly_remainder_calculable<std::invoke_result_t<std::modulus<>&, L, R>, R> && weakly_remainder_calculable<L, std::invoke_result_t<std::modulus<>&, L, R>> && weakly_remainder_calculable<std::invoke_result_t<std::modulus<>&, L, R>, std::invoke_result_t<std::modulus<>&, L, R>>; template<class L, class R = L> concept bitand_assignable = weakly_bitand_assignable<L, R> && weakly_bitand_assignable<std::invoke_result_t<std::bit_and<>&, L, R>, R> && weakly_bitand_assignable<L, std::invoke_result_t<std::bit_and<>&, L, R>> && weakly_bitand_assignable<std::invoke_result_t<std::bit_and<>&, L, R>, std::invoke_result_t<std::bit_and<>&, L, R>>; template<class L, class R = L> concept bitor_assignable = weakly_bitor_calcurable<L, R> && weakly_bitor_calcurable<std::invoke_result_t<std::bit_or<>&, L, R>, R> && weakly_bitor_calcurable<L, std::invoke_result_t<std::bit_or<>&, L, R>> && weakly_bitor_calcurable<std::invoke_result_t<std::bit_or<>&, L, R>, std::invoke_result_t<std::bit_or<>&, L, R>>; template<class L, class R = L> concept bitxor_assignable = weakly_bitxor_calcurable<L, R> && weakly_bitxor_calcurable<std::invoke_result_t<std::bit_xor<>&, L, R>, R> && weakly_bitxor_calcurable<L, std::invoke_result_t<std::bit_xor<>&, L, R>> && weakly_bitxor_calcurable<std::invoke_result_t<std::bit_xor<>&, L, R>, std::invoke_result_t<std::bit_xor<>&, L, R>>; template<class L, class R = L> concept addition_assignable = weakly_addition_assignable<L, R> && weakly_addition_assignable<std::remove_cvref_t<std::invoke_result_t<std::plus<>&, L, R>>, R> && weakly_addition_assignable<L, std::invoke_result_t<std::plus<>&, L, R>> && weakly_addition_assignable<std::remove_cvref_t<std::invoke_result_t<std::plus<>&, L, R>>, std::invoke_result_t<std::plus<>&, L, R>>; template<class L, class R = L> concept subtraction_assignable = weakly_subtraction_assignable<L, R> && weakly_subtraction_assignable<std::remove_cvref_t<std::invoke_result_t<std::minus<>&, L, R>>, R> && weakly_subtraction_assignable<L, std::invoke_result_t<std::minus<>&, L, R>> && weakly_subtraction_assignable<std::remove_cvref_t<std::invoke_result_t<std::minus<>&, L, R>>, std::invoke_result_t<std::minus<>&, L, R>>; template<class L, class R = L> concept multipliation_assignalbe = weakly_multipliation_assignalbe<L, R> && weakly_multipliation_assignalbe<std::remove_cvref_t<std::invoke_result_t<std::multiplies<>&, L, R>>, R> && weakly_multipliation_assignalbe<L, std::invoke_result_t<std::multiplies<>&, L, R>> && weakly_multipliation_assignalbe<std::remove_cvref_t<std::invoke_result_t<std::multiplies<>&, L, R>>, std::invoke_result_t<std::multiplies<>&, L, R>>; template<class L, class R = L> concept division_assignable = weakly_division_assignable<L, R> && weakly_division_assignable<std::remove_cvref_t<std::invoke_result_t<std::divides<>&, L, R>>, R> && weakly_division_assignable<L, std::invoke_result_t<std::divides<>&, L, R>> && weakly_division_assignable<std::remove_cvref_t<std::invoke_result_t<std::divides<>&, L, R>>, std::invoke_result_t<std::divides<>&, L, R>>; template<class L, class R = L> concept remainder_assignable = weakly_remainder_assignable<L, R> && weakly_remainder_assignable<std::remove_cvref_t<std::invoke_result_t<std::modulus<>&, L, R>>, R> && weakly_remainder_assignable<L, std::invoke_result_t<std::modulus<>&, L, R>> && weakly_remainder_assignable<std::remove_cvref_t<std::invoke_result_t<std::modulus<>&, L, R>>, std::invoke_result_t<std::modulus<>&, L, R>>; template<class T> concept weakly_incrementable = std::movable<T> && requires (T v) { { ++v } -> std::same_as<T&>; v++; }; template<class T> concept weakly_decrementable = std::movable<T> && requires (T v) { { --v } -> std::same_as<T&>; v--; }; template<class T> concept incrementable = std::regular<T> && weakly_incrementable<T> && requires (T v) { { v++ } -> std::same_as<T>; }; template<class T> concept decrementable = std::regular<T> && weakly_decrementable<T> && requires (T v) { { v-- } -> std::same_as<T>; }; template<class L, class R = L> concept weakly_arithmetic_operable = weakly_addable<L, R> && weakly_subtractable<L, R> && weakly_multipliable<L, R> && weakly_divisable<L, R>; template<class L, class R = L> concept weakly_arithmetic_operation_assignable = weakly_addition_assignable<L, R> && weakly_subtraction_assignable<L, R> && weakly_multipliation_assignalbe<L, R> && weakly_division_assignable<L, R>; template<class L, class R = L> concept arithmetic_operable = weakly_arithmetic_operable<L, R> && addable<L, R> && subtractable<L, R> && multipliable<L, R> && divisable<L, R>; template<class L, class R = L> concept arithmetic_operation_assignable = weakly_arithmetic_operation_assignable<L, R> && addition_assignable<L, R> && subtraction_assignable<L, R> && multipliation_assignalbe<L, R> && division_assignable<L, R>; template<class T> concept unary_addable = requires (T v) { { +v } -> std::same_as<T>; }; template<class T> concept unary_subtractable = requires (T v) { { -v } -> std::same_as<T>; }; template<class T> concept numeric = std::regular<T> && arithmetic_operable<T> && arithmetic_operation_assignable<T> && weakly_incrementable<T> && unary_addable<T> && unary_subtractable<T>; } // namespace internal } // namespace uni #line 2 "internal/resolving_rank.hpp" namespace uni { namespace internal { template<int P> struct resolving_rank : resolving_rank<P-1> {}; template<> struct resolving_rank<0> {}; } // namespace internal } // namespace uni #line 2 "internal/exception.hpp" namespace uni { namespace internal { template<class... T> inline constexpr bool EXCEPTION_ON_TYPE = false; template<auto T> inline constexpr bool EXCEPTION_ON_VALUE = false; } // namespace internal } // namespace uni #line 34 "debugger/debug.hpp" #line 36 "debugger/debug.hpp" #include <cxxabi.h> namespace debugger { template<class T> auto _debug (T&& val) -> decltype(val._debug()) { return val._debug(); } std::ostream *cdebug = &std::clog; #ifdef DEBUGGER_COLORED_OUTPUT constexpr std::string COLOR_LINE = "\033[3;35m"; constexpr std::string COLOR_IDENTIFIER = "\033[32m"; constexpr std::string COLOR_INIT = "\033[m"; constexpr std::string COLOR_STRING = "\033[33m"; constexpr std::string COLOR_TYPE = "\033[34m"; constexpr std::string COLOR_NUMERIC = "\033[36m"; constexpr std::string COLOR_LITERAL_OPERATOR = "\033[31m"; #else constexpr std::string COLOR_LINE = ""; constexpr std::string COLOR_IDENTIFIER = ""; constexpr std::string COLOR_INIT = ""; constexpr std::string COLOR_STRING = ""; constexpr std::string COLOR_TYPE = ""; constexpr std::string COLOR_NUMERIC = ""; constexpr std::string COLOR_LITERAL_OPERATOR = ""; #endif using Brackets = std::pair<std::string, std::string>; template<class T> std::string dump(T&&); template<class T> const std::string get_type_name(T&& val) { const char* const name = typeid(std::forward<T>(val)).name(); int status = -4; char* const demangled_name = abi::__cxa_demangle(name, NULL, NULL, &status); std::string res{name}; if (status == 0) { res = std::string(demangled_name); free(demangled_name); } return COLOR_TYPE + res + COLOR_INIT; } struct debug_t : std::string { using std::string::string; debug_t(const std::string& str) { this->assign(str); } }; template<size_t N, class T> void dump_tuple_impl([[maybe_unused]] T&& val, std::stringstream &res) { if constexpr(N < std::tuple_size_v<std::remove_cvref_t<T>>) { res << dump(std::get<N>(val)); if constexpr(N < std::tuple_size_v<std::remove_cvref_t<T>> - 1) res << ", "; dump_tuple_impl<N + 1>(std::forward<T>(val), res); } } template<std::ranges::input_range R> std::string dump_range_impl(R&& range, const Brackets& brcs = { "[", "]" }, const std::string& spl = ", ") { std::stringstream res; res << brcs.first << " "; auto itr = std::ranges::begin(range); auto end = std::ranges::end(std::forward<R>(range)); while(itr != end) { if(std::ranges::next(itr) == end) res << dump(*itr) << " "; else res << dump(*itr) << spl; ++itr; } res << brcs.second ; return res.str(); } std::string dump_debug_t(debug_t info) { return info; } struct dump_primitive_like { std::string operator()(std::nullptr_t) const { return COLOR_INIT; } template<uni::internal::pointer T> std::string operator()(const T ptr) const { return dump(*ptr); } template<class T> requires uni::internal::derived_from_template<std::remove_cvref_t<T>, std::basic_string> std::string operator()(T&& val) const { std::stringstream res; res << COLOR_STRING << "`" << val << "`" << COLOR_INIT; return res.str(); } std::string operator()(const char val) const { std::stringstream res; res << COLOR_STRING << "\'" << val << "\'" << COLOR_INIT; return res.str(); } std::string operator()(const char val[]) const { std::stringstream res; res << COLOR_STRING << "\"" << val << "\"" << COLOR_INIT; return res.str(); } std::string operator()(const unsigned char val) const { std::stringstream res; res << COLOR_NUMERIC << static_cast<int>(val) << COLOR_INIT; return res.str(); } std::string operator()(const bool val) const { std::stringstream res; res << COLOR_NUMERIC << (val ? "true" : "false" ) << COLOR_INIT; return res.str(); } template<uni::internal::arithmetic T> std::string operator()(const T val) const { std::stringstream res; res << std::setprecision(std::numeric_limits<T>::digits10) << val; auto str = res.str(); std::string dst = ""; while(str.length() > 3) { dst = ',' + str.substr(str.length() - 3, 3) + dst; str = str.substr(0, str.length() - 3); } return COLOR_NUMERIC + str + dst + COLOR_LITERAL_OPERATOR + uni::internal::literal_operator_v<T> + COLOR_INIT; }; template<class T> requires uni::internal::derived_from_template<std::remove_cvref_t<T>, std::optional> std::string operator()(T&& val) const { if(val.has_value()) return dump(*val); return COLOR_TYPE + "invalid" + COLOR_INIT; } }; struct dump_bitset { template<std::size_t N> std::string operator()(const std::bitset<N>& val) const { std::stringstream res; res << COLOR_NUMERIC << val.to_string() << COLOR_INIT; return res.str(); } }; struct dump_has_val { template<class T> requires requires (T val) { val.val(); } std::string operator()(T&& val) const { return dump(val.val()); } }; struct dump_iterator { template<std::input_or_output_iterator I> std::string operator()(I&& itr) const { return COLOR_TYPE + "<iterator> " + COLOR_INIT+ dump(*itr); } }; struct dump_wrapper { template<class T> requires uni::internal::derived_from_template<std::remove_cvref_t<T>, std::map> std::string operator()(T&& val) const { return dump_range_impl(val, Brackets("{", "}")); } template<class T> requires uni::internal::derived_from_template<std::remove_cvref_t<T>, std::multimap> std::string operator()(T&& val) const { return dump_range_impl(val, Brackets("{", "}")); } template<class T> requires uni::internal::derived_from_template<std::remove_cvref_t<T>, std::unordered_map> std::string operator()(T&& val) const { return dump_range_impl(val, Brackets("{", "}")); } template<class T> requires uni::internal::derived_from_template<std::remove_cvref_t<T>, std::unordered_multimap> std::string operator()(T&& val) const { return dump_range_impl(val, Brackets("{", "}")); } template<class T> requires uni::internal::derived_from_template<std::remove_cvref_t<T>, std::set> std::string operator()(T&& val) const { return dump_range_impl(val, Brackets("{", "}")); } template<class T> requires uni::internal::derived_from_template<std::remove_cvref_t<T>, std::multiset> std::string operator()(T&& val) const { return dump_range_impl(val, Brackets("{", "}")); } template<class T> requires uni::internal::derived_from_template<std::remove_cvref_t<T>, std::unordered_set> std::string operator()(T&& val) const { return dump_range_impl(val, Brackets("{", "}")); } template<class T> requires uni::internal::derived_from_template<std::remove_cvref_t<T>, std::unordered_multiset> std::string operator()(T&& val) const { return dump_range_impl(val, Brackets("{", "}")); } template<class T> requires uni::internal::derived_from_template<std::remove_cvref_t<T>, std::valarray> std::string operator()(T&& val) const { return dump_range_impl(val, Brackets("[", "]")); } template<class T> requires uni::internal::derived_from_template<std::remove_cvref_t<T>, std::vector> std::string operator()(T&& val) const { return dump_range_impl(val, Brackets("[", "]")); } template<class T> requires uni::internal::derived_from_template<std::remove_cvref_t<T>, std::deque> std::string operator()(T&& val) const { return dump_range_impl(val, Brackets("[", "]")); } template<uni::internal::derived_from_template<std::queue> T> std::string operator()(T val) const { std::vector<typename T::value_type> vec; while(!val.empty()) vec.emplace_back(val.front()), val.pop(); return dump_range_impl(vec, Brackets("<", ">")); } template<uni::internal::derived_from_template<std::stack> T> std::string operator()(T val) const { std::vector<typename T::value_type> vec; while(!val.empty()) vec.emplace_back(val.top()), val.pop(); std::ranges::reverse(vec); return dump_range_impl(vec, Brackets("<", ">")); } template<uni::internal::derived_from_template<std::priority_queue> T> std::string operator()(T val) const { std::vector<typename T::value_type> vec; while(!val.empty()) vec.emplace_back(val.top()), val.pop(); return dump_range_impl(vec, Brackets("<", ">")); } template<class T> requires uni::internal::derived_from_template<std::remove_cvref_t<T>, std::pair> std::string operator()(T&& val) const { std::stringstream res; res << "( " << dump(val.first) << ", " << dump(val.second) << " )"; return res.str(); } template<class T> requires uni::internal::derived_from_template<std::remove_cvref_t<T>, std::tuple> std::string operator()(T&& val) const { std::stringstream res; res << "( "; dump_tuple_impl<0>(val, res); res << " )"; return res.str(); } }; struct dump_range { template<std::ranges::input_range T> std::string operator()(T&& val) const { return dump_range_impl(val); } }; struct dump_loggable { template<uni::internal::loggable T> std::string operator()(T&& val) const { auto res = _debug(val); if constexpr(std::same_as<decltype(res), debug_t>) { return res; } else { return dump(res); } } }; template<class T> std::string dump(T&& val) { if constexpr(std::same_as<std::remove_cvref_t<T>, debug_t>) { // return "debug_t"; return dump_debug_t(std::forward<T>(val)); } if constexpr(std::invocable<dump_primitive_like, T>) { // return "primitive"; return dump_primitive_like{}(std::forward<T>(val)); } if constexpr(std::invocable<dump_loggable, T>) { // return "loggable"; return dump_loggable{}(std::forward<T>(val)); } if constexpr(std::invocable<dump_has_val, T>) { // return "has val"; return dump_has_val{}(std::forward<T>(val)); } if constexpr(std::invocable<dump_bitset, T>) { // return "bitset"; return dump_bitset{}(std::forward<T>(val)); } if constexpr(std::invocable<dump_iterator, T>) { // return "iterator"; return dump_iterator{}(std::forward<T>(val)); } if constexpr(std::invocable<dump_wrapper, T>) { // return "wrapper"; return dump_wrapper{}(std::forward<T>(val)); } if constexpr(std::invocable<dump_range, T>) {; // return "range"; return dump_range{}(std::forward<T>(val)); } return "== dump error =="; } template<class T> void debug(T&& val, const std::string& endl) { *cdebug << dump(val) << endl << std::flush; } constexpr std::string_view WHITESPACES = " \n\r\t\f\v"; std::string ltrim(const std::string &s) { size_t start = s.find_first_not_of(WHITESPACES); return (start == std::string::npos) ? "" : s.substr(start); } std::string rtrim(const std::string &s) { size_t end = s.find_last_not_of(WHITESPACES); return (end == std::string::npos) ? "" : s.substr(0, end + 1); } std::string trim(const std::string &s) { return rtrim(ltrim(s)); } std::vector<std::string> split(const std::string& str) { static constexpr char SEPARATOR = ','; static constexpr char ESCAPE = '\\'; static constexpr std::string_view QUOTATIONS = "\"\'"; static constexpr std::string_view PARENTHESES = "()[]{}<>"; static constexpr auto PARENTHESES_KINDS = std::ranges::size(PARENTHESES); static_assert(PARENTHESES_KINDS % 2 == 0); std::vector<std::string> res = { "" }; bool quoted = false; std::array<int,(PARENTHESES_KINDS / 2)> enclosed = { 0 }; for(auto itr = std::ranges::begin(str); itr != std::ranges::end(str); ++itr) { if(std::ranges::find(QUOTATIONS, *itr) != std::ranges::end(QUOTATIONS)) { if(itr == std::ranges::begin(str) or *std::ranges::prev(itr) != ESCAPE) { quoted ^= true; } } if(const auto found = std::ranges::find(PARENTHESES, *itr); found != std::ranges::end(PARENTHESES)) { if(not quoted) { auto& target = enclosed[std::ranges::distance(std::begin(PARENTHESES), found) / 2]; target = std::max(0, target - static_cast<int>((std::ranges::distance(std::begin(PARENTHESES), found) % 2) * 2) + 1); } } if( not quoted and static_cast<std::size_t>(std::ranges::count(enclosed, 0)) == std::ranges::size(enclosed) and *itr == SEPARATOR ) { res.push_back(""); } else { res.back() += *itr; } } for(auto&& v : res) v = trim(v); return res; } template<class Arg> void raw(std::nullptr_t, Arg&& arg) { *cdebug << std::forward<Arg>(arg) << std::flush; } template<class Arg> void raw(Arg&& arg) { *cdebug << dump(std::forward<Arg>(arg)) << std::flush; } void debug(const std::vector<std::string>, const size_t, const int, const std::string) { debug(nullptr, COLOR_INIT + "\n"); } std::map<std::pair<std::string, int>, int> count; template<class Head, class... Tail> void debug( const std::vector<std::string> args, const size_t idx, const int line, const std::string path, Head&& H, Tail&&... T ) { if(idx == 0) { std::string file = path.substr(path.find_last_of("/") + 1); debug(nullptr, COLOR_LINE + file + " #" + std::to_string(line) + " (" + std::to_string(count[{ file, line }]++) + ")" + COLOR_INIT); } debug(nullptr, "\n - "); const std::string content = dump(H); const std::string type_name = get_type_name(std::forward<Head>(H)); debug(nullptr, COLOR_IDENTIFIER + args[idx] + COLOR_INIT + " : "); debug(nullptr, content); if(type_name.size() + content.size() >= 300) debug(nullptr, "\n "); debug(nullptr, " " + type_name); debug(args, idx + 1, 0, path, std::forward<Tail>(T)...); } } // namespace debugger #line 13 "template/debug.hpp" #ifdef DEBUGGER_ENABLED #define debug(...) debugger::debug(debugger::split(#__VA_ARGS__), 0, __LINE__, __FILE__, __VA_ARGS__) #define debug_(...) do { const std::string file = __FILE__; debugger::raw(nullptr, debugger::COLOR_LINE + file.substr(file.find_last_of("/") + 1) + " #" + std::to_string(__LINE__) + debugger::COLOR_INIT + " "); debugger::raw(__VA_ARGS__); debugger::raw(nullptr, debugger::COLOR_INIT + "\n"); } while(0); #define DEBUG if constexpr(true) #else #define debug(...) ({ ; }) #define debug_(...) ({ ; }) #define DEBUG if constexpr(false) #endif #line 3 "debugger/test.cpp" using namespace std; template<class T = int> struct matrix : vector<vector<T>> { matrix(size_t h, size_t w, T init = T()) : vector<vector<T>> (h, vector<T> (w, init)) {} inline T& operator()(size_t i, size_t j) { return (*this)[i][j]; } }; template<class T = int, class C = vector<T>> struct prime_sieve : C { prime_sieve(size_t max) : is_prime(max+1, true) { is_prime[0] = is_prime[1] = false; for(size_t p=2; p<=max; p++) if(is_prime[p]) { for(size_t i=p*p; i<=max; i+=p) is_prime[i] = false; this->emplace_back(p); } } bool operator()(size_t index) { return is_prime[index]; } private: vector<bool> is_prime; }; template<class T> struct Iterator { const T* p; const T& operator*() { return *p; } Iterator& operator++() { ++p; return *this; } bool operator!=(const Iterator& v) { return p != v.p; } ptrdiff_t operator-(const Iterator& v) { return p - v.p; } }; template<class T> ptrdiff_t distance(Iterator<T>& a, Iterator<T>& b) { return b - a; }; struct MyString { const char* s; Iterator<char> begin() { return { s }; } Iterator<char> end() { return { s + strlen(s) }; } }; struct MyStructure0 { MyStructure0(int a, int b, int c, int d) : a(a), b(b), c(c), d(d) {} vector<int> _debug() const { return { 0, a + b + c + d, a * b * c * d }; } private: int a, b, c, d; }; struct MyStructure1 { MyStructure1(int a, int b, int c, int d) : a(a), b(b), c(c), d(d) {} friend vector<int> _debug(const MyStructure1 &s); private: int a, b, c, d; }; vector<int> _debug(const MyStructure1 &s) { return { 1, s.a + s.b + s.c + s.d, s.a * s.b * s.c * s.d }; } // template<unsigned long N> debugger::debug_t _debug(bitset<N> &bist) { // return bist.to_string(); // } string _debug(bitset<10UL> bist) { return bist.to_string(); } signed main() { debug('a', "abcdefg", string("abcdefg")); debug(1, 1U, 1L, 1UL, 1LL, 1ULL, 1.0, 1.0L); vector<int> vec_1d = { 1, 2, 3, 4 }; debug(vec_1d); vector<vector<int>> vec_2d = { { 1, 2, 3, 4 }, { 1, 3, 5 }, { 1, 4, 10 } }; debug(vec_2d); matrix<int> matrix1(10, 5, 0); debug(matrix1); matrix matrix2(2, 3, 0.0L); debug(matrix2); vector vector_string = { "string", "abcdefg" }; debug(vector_string); set<int> set_int = { 0, 3, 6, 1, 2, 3, 0 }; debug(set_int); unordered_set<int> unord_set_int = { 0, 3, 6, 1, 2, 3, 0 }; debug(unord_set_int); map<int,int> map__int_int = { { 0, 3 }, { 6, 1 }, { 2, 3 } }; debug(map__int_int); // unordered_map<int,int> unord_map__int_int = { { 0, 3 }, { 6, 1 }, { 2, 3 } }; // debug(unord_map__int_int); debug(prime_sieve(100)); // debug(MyString{"abcdefg"}); debug(string{string{"abcdefg"}}); static_assert(!uni::internal::is_loggable_v<int>); static_assert(!uni::internal::is_loggable_v<vector<int>>); static_assert(uni::internal::is_loggable_v<MyStructure0>); static_assert(uni::internal::is_loggable_v<MyStructure1>); MyStructure0 my_structure0 = { 1, 2, 3, 4 }; debug(my_structure0); MyStructure1 my_structure1 = { 1, 2, 3, 4 }; debug(my_structure1); pair<int,MyStructure0> pair__my_structure0 = { 0, { 1, 2, 3, 4 } }; debug(pair__my_structure0); pair<int,MyStructure1> pair__my_structure1 = { 0, { 1, 2, 3, 4 } }; debug(pair__my_structure1); vector<pair<int,MyStructure0>> vector_pair__my_structure0 = { { 0, { 1, 2, 3, 4 } }, { 1, { 1, 2, 3, 4 } } }; debug(vector_pair__my_structure0); vector<pair<int,MyStructure1>> vector_pair__my_structure1 = { { 0, { 1, 2, 3, 4 } }, { 1, { 1, 2, 3, 4 } } }; debug(vector_pair__my_structure1); map<vector<string>,set<pair<int,tuple<string,char,unsigned>>>> complexed = { { { "str0", "str1" }, { { 1, { "str2", 'c', 1124 } } } } }; // static_assert(!uni::internal::wrapping_type_of<map<vector<string>,, std::basic_string>); debug(complexed); debug( map<vector<string>,set<pair<int,tuple<string,char,unsigned>>>> { { { "str0", "str1" }, { { 1, { "str2", 'c', 1124 } } } } } ); std::queue<int> que; que.push(3), que.push(1), que.push(4), que.push(1); debug(que); std::stack<int> stk; stk.push(3), stk.push(1), stk.push(4), stk.push(1); debug(stk); std::priority_queue<int> prique; prique.push(3), prique.push(1), prique.push(4), prique.push(1); debug(prique); return 0; }