#include "adaptor/string.hpp"
#pragma once #include <string> #include <algorithm> #include "adaptor/internal/advanced_container.hpp" namespace uni { using string = internal::advanced_container<std::string>; } // namespace uni namespace std { template<> struct hash<uni::string> { inline auto operator()(const uni::string& key) const noexcept(NO_EXCEPT) { return std::hash<std::string>{}(static_cast<std::string>(key)); } }; }
#line 2 "adaptor/string.hpp" #include <string> #include <algorithm> #line 2 "adaptor/internal/advanced_container.hpp" #include <cassert> #line 6 "adaptor/internal/advanced_container.hpp" #include <utility> #include <ranges> #line 2 "snippet/aliases.hpp" #include <cstdint> #line 6 "snippet/aliases.hpp" #include <vector> #line 8 "snippet/aliases.hpp" #line 2 "internal/dev_env.hpp" #ifdef LOCAL_JUDGE inline constexpr bool DEV_ENV = true; inline constexpr bool NO_EXCEPT = false; #else inline constexpr bool DEV_ENV = false; inline constexpr bool NO_EXCEPT = true; #endif // LOCAL_JUDGE #if __cplusplus >= 202100L #define CPP20 true #define CPP23 true #elif __cplusplus >= 202002L #define CPP20 true #define CPP23 false #else #define CPP20 false #define CPP23 false #endif #line 2 "snippet/internal/types.hpp" #line 4 "snippet/internal/types.hpp" namespace uni { using i16 = std::int16_t; using u16 = std::uint16_t; using i32 = std::int32_t; using u32 = std::uint32_t; using i64 = std::int64_t; using u64 = std::uint64_t; #ifdef __GNUC__ using i128 = __int128_t; using u128 = __uint128_t; using f128 = __float128; #endif using uint = unsigned; using ll = long long; using ull = unsigned long long; using ld = long double; } // namespace uni #line 12 "snippet/aliases.hpp" #define until(...) while(!(__VA_ARGS__)) #define CONTINUE(...) { __VA_ARGS__; continue; } #define BREAK(...) { __VA_ARGS__; break; } #define ALL(x) std::ranges::begin((x)),std::ranges::end((x)) #define RALL(x) std::ranges::rbegin((x)),std::ranges::rend((x)) #define $F first #define $S second namespace uni { constexpr char LN = '\n'; constexpr char SPC = ' '; constexpr std::pair<int,int> DIRS4[] = { { -1, 0 }, { 0, 1 }, { 1, 0 }, { 0, -1 } }; constexpr std::pair<int,int> DIRS4P[] = { { -1, 0 }, { 0, 1 }, { 1, 0 }, { 0, -1 }, { 0, 0 } }; constexpr std::pair<int,int> DIRS8[] = { { -1, 0 }, { -1, 1 }, { 0, 1 }, { 1, 1 }, { 1, 0 }, { 1, -1 }, { 0, -1 }, { -1, -1 } }; constexpr std::pair<int,int> DIRS8P[] = { { -1, 0 }, { -1, 1 }, { 0, 1 }, { 1, 1 }, { 1, 0 }, { 1, -1 }, { 0, -1 }, { -1, -1 }, { 0, 0 } }; template<class T> using spair = std::pair<T,T>; } // namespace uni namespace std { using bit_reference = std::vector<bool>::reference; bit_reference operator |= (bit_reference a, const bool b) noexcept(NO_EXCEPT) { return a = a | b; } bit_reference operator &= (bit_reference a, const bool b) noexcept(NO_EXCEPT) { return a = a & b; } } #line 2 "snippet/iterations.hpp" #include <type_traits> #line 2 "macro/overload.hpp" #define $OVERLOAD2(arg0, arg1, cmd, ...) cmd #define $OVERLOAD3(arg0, arg1, arg2, cmd, ...) cmd #define $OVERLOAD4(arg0, arg1, arg2, arg3, cmd, ...) cmd #define $OVERLOAD5(arg0, arg1, arg2, arg3, arg4, cmd, ...) cmd #define $OVERLOAD6(arg0, arg1, arg2, arg3, arg4, arg5, cmd, ...) cmd #line 2 "macro/basic.hpp" #define TO_STRING_AUX(x) #x #define TO_STRING(x) TO_STRING_AUX(x) #define CONCAT_AUX(x, y) x##y #define CONCAT(x, y) CONCAT_AUX(x, y) #define UNPAREN_AUX(...) __VA_ARGS__ #define UNPAREN(...) __VA_ARGS__ #line 6 "snippet/iterations.hpp" #define LOOP(n) REPI(CONCAT(_$, __COUNTER__), n) #define REPI(i,n) for(std::remove_cvref_t<decltype(n)> i=0, CONCAT(i, $)=(n); i<CONCAT(i, $); ++i) #define REPF(i,l,r) for(std::common_type_t<std::remove_cvref_t<decltype(l)>,std::remove_cvref_t<decltype(r)>> i=(l), CONCAT(i, $)=(r); i<CONCAT(i, $); ++i) #define REPIS(i,l,r,s) for(std::common_type_t<std::remove_cvref_t<decltype(l)>,std::remove_cvref_t<decltype(r)>,std::remove_cvref_t<decltype(s)>> i=(l), CONCAT(i, $)=(r); i<CONCAT(i, $); i+=(s)) #define REPR(i,n) for(auto i=(n); --i>=0;) #define REPB(i,l,r) for(std::common_type_t<std::remove_cvref_t<decltype(l)>,std::remove_cvref_t<decltype(r)>> i=(r), CONCAT(i, $)=(l); --i>=CONCAT(i, $);) #define REPRS(i,l,r,s) for(std::common_type_t<std::remove_cvref_t<decltype(l)>,std::remove_cvref_t<decltype(r)>,std::remove_cvref_t<decltype(s)>> i=(l)+((r)-(l)-1)/(s)*(s), CONCAT(i, $)=(l); i>=CONCAT(i, $); (i-=(s))) #define REP(...) $OVERLOAD4(__VA_ARGS__, REPIS, REPF, REPI, LOOP)(__VA_ARGS__) #define REPD(...) $OVERLOAD4(__VA_ARGS__, REPRS, REPB, REPR)(__VA_ARGS__) #define FORO(i,n) for(int i=0, CONCAT(i, $)=static_cast<int>(n); i<=CONCAT(i, $); ++i) #define FORI(i,l,r) for(std::common_type_t<std::remove_cvref_t<decltype(l)>,std::remove_cvref_t<decltype(r)>> i=(l), CONCAT(i, $)=(r); i<=CONCAT(i, $); ++i) #define FORIS(i,l,r,s) for(std::common_type_t<std::remove_cvref_t<decltype(l)>,std::remove_cvref_t<decltype(r)>,std::remove_cvref_t<decltype(s)>> i=(l), CONCAT(i, $)=(r); i<=CONCAT(i, $); i+=(s)) #define FORRO(i,n) for(auto i=(n); i>=0; --i) #define FORR(i,l,r) for(std::common_type_t<std::remove_cvref_t<decltype(l)>,std::remove_cvref_t<decltype(r)>> i=(r), CONCAT(i, $)=(l); i>=CONCAT(i, $); --i) #define FORRS(i,l,r,s) for(std::common_type_t<std::remove_cvref_t<decltype(l)>,std::remove_cvref_t<decltype(r)>,std::remove_cvref_t<decltype(s)>> i=(l)+((r)-(l))/(s)*(s), CONCAT(i, $)=(l); i>=CONCAT(i, $); i-=(s)) #define FOR(...) $OVERLOAD4(__VA_ARGS__, FORIS, FORI, FORO)(__VA_ARGS__) #define FORD(...) $OVERLOAD4(__VA_ARGS__, FORRS, FORR, FORRO)(__VA_ARGS__) #define ITR1(e0,v) for(const auto &e0 : (v)) #define ITRP1(e0,v) for(auto e0 : (v)) #define ITRR1(e0,v) for(auto &e0 : (v)) #define ITR2(e0,e1,v) for(const auto [e0, e1] : (v)) #define ITRP2(e0,e1,v) for(auto [e0, e1] : (v)) #define ITRR2(e0,e1,v) for(auto &[e0, e1] : (v)) #define ITR3(e0,e1,e2,v) for(const auto [e0, e1, e2] : (v)) #define ITRP3(e0,e1,e2,v) for(auto [e0, e1, e2] : (v)) #define ITRR3(e0,e1,e2,v) for(auto &[e0, e1, e2] : (v)) #define ITR4(e0,e1,e2,e3,v) for(const auto [e0, e1, e2, e3] : (v)) #define ITRP4(e0,e1,e2,e3,v) for(auto [e0, e1, e2, e3] : (v)) #define ITRR4(e0,e1,e2,e3,v) for(auto &[e0, e1, e2, e3] : (v)) #define ITR5(e0,e1,e2,e3,e4,v) for(const auto [e0, e1, e2, e3, e4] : (v)) #define ITRP5(e0,e1,e2,e3,e4,v) for(auto [e0, e1, e2, e3, e4] : (v)) #define ITRR5(e0,e1,e2,e3,e4,v) for(auto &[e0, e1, e2, e3, e4] : (v)) #define ITR(...) $OVERLOAD6(__VA_ARGS__, ITR5, ITR4, ITR3, ITR2, ITR1)(__VA_ARGS__) #define ITRP(...) $OVERLOAD6(__VA_ARGS__, ITRP5, ITRP4, ITRP3, ITRP2, ITRP1)(__VA_ARGS__) #define ITRR(...) $OVERLOAD6(__VA_ARGS__, ITRR5, ITRR4, ITRR3, ITRR2, ITRR1)(__VA_ARGS__) #line 11 "adaptor/internal/advanced_container.hpp" #line 2 "internal/types.hpp" #line 4 "internal/types.hpp" namespace uni { namespace internal { using size_t = std::int64_t; using int128_t = __int128_t; using uint128_t = __uint128_t; } // namesapce internal } // namespace uni #line 2 "internal/concepts.hpp" #line 5 "internal/concepts.hpp" #include <concepts> #line 7 "internal/concepts.hpp" #include <limits> #include <functional> namespace uni { namespace internal { template<class R, class T> concept convertibel_range = std::convertible_to<std::ranges::range_value_t<R>, T>; template<class T, class V> concept item_or_convertible_range = std::convertible_to<T, V> || convertibel_range<T, V>; template<class Structure> concept available = requires () { typename Structure; }; template< template<class...> class Structure, class... TemplateParameters > concept available_with = available<Structure<TemplateParameters...>>; template<class T> concept arithmetic = std::is_arithmetic_v<T>; template<class T> concept pointer = std::is_pointer_v<T>; template<class T> concept structural = std::is_class_v<T>; template<class Large, class Small> concept has_double_digits_of = (std::numeric_limits<Large>::digits == 2 * std::numeric_limits<Small>::digits); template<class Large, class Small> concept has_more_digits_than = (std::numeric_limits<Large>::digits > std::numeric_limits<Small>::digits); template<class Large, class Small> concept has_or_more_digits_than = (std::numeric_limits<Large>::digits >= std::numeric_limits<Small>::digits); template<class T> concept has_static_zero = requires { T::zero; }; template<class T> concept has_static_one = requires { T::one; }; template<class L, class R = L> concept weakly_bitand_calcurable = requires (L lhs, R rhs) { lhs & rhs; }; template<class L, class R = L> concept weakly_bitor_calcurable = requires (L lhs, R rhs) { lhs | rhs; }; template<class L, class R = L> concept weakly_bitxor_calcurable = requires (L lhs, R rhs) { lhs ^ rhs; }; template<class L, class R = L> concept weakly_addable = requires (L lhs, R rhs) { lhs + rhs; }; template<class L, class R = L> concept weakly_subtractable = requires (L lhs, R rhs) { lhs - rhs; }; template<class L, class R = L> concept weakly_multipliable = requires (L lhs, R rhs) { lhs * rhs; }; template<class L, class R = L> concept weakly_divisable = requires (L lhs, R rhs) { lhs / rhs; }; template<class L, class R = L> concept weakly_remainder_calculable = requires (L lhs, R rhs) { lhs % rhs; }; template<class L, class R = L> concept weakly_bitand_assignable = requires (L lhs, R rhs) { lhs += rhs; }; template<class L, class R = L> concept weakly_bitor_assignable = requires (L lhs, R rhs) { lhs |= rhs; }; template<class L, class R = L> concept weakly_bitxor_assignable = requires (L lhs, R rhs) { lhs ^= rhs; }; template<class L, class R = L> concept weakly_addition_assignable = requires (L lhs, R rhs) { lhs += rhs; }; template<class L, class R = L> concept weakly_subtraction_assignable = requires (L lhs, R rhs) { lhs -= rhs; }; template<class L, class R = L> concept weakly_multipliation_assignalbe = requires (L lhs, R rhs) { lhs *= rhs; }; template<class L, class R = L> concept weakly_division_assignable = requires (L lhs, R rhs) { lhs /= rhs; }; template<class L, class R = L> concept weakly_remainder_assignable = requires (L lhs, R rhs) { lhs /= rhs; }; template<class L, class R = L> concept bitand_calculable = weakly_bitand_calcurable<L, R> && weakly_bitand_calcurable<std::invoke_result_t<std::bit_and<>&, L, R>, R> && weakly_bitand_calcurable<L, std::invoke_result_t<std::bit_and<>&, L, R>> && weakly_bitand_calcurable<std::invoke_result_t<std::bit_and<>&, L, R>, std::invoke_result_t<std::bit_and<>&, L, R>>; template<class L, class R = L> concept bitor_calculable = weakly_bitor_calcurable<L, R> && weakly_bitor_calcurable<std::invoke_result_t<std::bit_or<>&, L, R>, R> && weakly_bitor_calcurable<L, std::invoke_result_t<std::bit_or<>&, L, R>> && weakly_bitor_calcurable<std::invoke_result_t<std::bit_or<>&, L, R>, std::invoke_result_t<std::bit_or<>&, L, R>>; template<class L, class R = L> concept bitxor_calculable = weakly_bitxor_calcurable<L, R> && weakly_bitxor_calcurable<std::invoke_result_t<std::bit_xor<>&, L, R>, R> && weakly_bitxor_calcurable<L, std::invoke_result_t<std::bit_xor<>&, L, R>> && weakly_bitxor_calcurable<std::invoke_result_t<std::bit_xor<>&, L, R>, std::invoke_result_t<std::bit_xor<>&, L, R>>; template<class L, class R = L> concept addable = weakly_addable<L, R> && weakly_addable<std::invoke_result_t<std::plus<>&, L, R>, R> && weakly_addable<L, std::invoke_result_t<std::plus<>&, L, R>> && weakly_addable<std::invoke_result_t<std::plus<>&, L, R>, std::invoke_result_t<std::plus<>&, L, R>>; template<class L, class R = L> concept subtractable = weakly_subtractable<L, R> && weakly_subtractable<std::invoke_result_t<std::minus<>&, L, R>, R> && weakly_subtractable<L, std::invoke_result_t<std::minus<>&, L, R>> && weakly_subtractable<std::invoke_result_t<std::minus<>&, L, R>, std::invoke_result_t<std::minus<>&, L, R>>; template<class L, class R = L> concept multipliable = weakly_multipliable<L, R> && weakly_multipliable<std::invoke_result_t<std::multiplies<>&, L, R>, R> && weakly_multipliable<L, std::invoke_result_t<std::multiplies<>&, L, R>> && weakly_multipliable<std::invoke_result_t<std::multiplies<>&, L, R>, std::invoke_result_t<std::multiplies<>&, L, R>>; template<class L, class R = L> concept divisable = weakly_divisable<L, R> && weakly_divisable<std::invoke_result_t<std::divides<>&, L, R>, R> && weakly_divisable<L, std::invoke_result_t<std::divides<>&, L, R>> && weakly_divisable<std::invoke_result_t<std::divides<>&, L, R>, std::invoke_result_t<std::divides<>&, L, R>>; template<class L, class R = L> concept remainder_calculable = weakly_remainder_calculable<L, R> && weakly_remainder_calculable<std::invoke_result_t<std::modulus<>&, L, R>, R> && weakly_remainder_calculable<L, std::invoke_result_t<std::modulus<>&, L, R>> && weakly_remainder_calculable<std::invoke_result_t<std::modulus<>&, L, R>, std::invoke_result_t<std::modulus<>&, L, R>>; template<class L, class R = L> concept bitand_assignable = weakly_bitand_assignable<L, R> && weakly_bitand_assignable<std::invoke_result_t<std::bit_and<>&, L, R>, R> && weakly_bitand_assignable<L, std::invoke_result_t<std::bit_and<>&, L, R>> && weakly_bitand_assignable<std::invoke_result_t<std::bit_and<>&, L, R>, std::invoke_result_t<std::bit_and<>&, L, R>>; template<class L, class R = L> concept bitor_assignable = weakly_bitor_calcurable<L, R> && weakly_bitor_calcurable<std::invoke_result_t<std::bit_or<>&, L, R>, R> && weakly_bitor_calcurable<L, std::invoke_result_t<std::bit_or<>&, L, R>> && weakly_bitor_calcurable<std::invoke_result_t<std::bit_or<>&, L, R>, std::invoke_result_t<std::bit_or<>&, L, R>>; template<class L, class R = L> concept bitxor_assignable = weakly_bitxor_calcurable<L, R> && weakly_bitxor_calcurable<std::invoke_result_t<std::bit_xor<>&, L, R>, R> && weakly_bitxor_calcurable<L, std::invoke_result_t<std::bit_xor<>&, L, R>> && weakly_bitxor_calcurable<std::invoke_result_t<std::bit_xor<>&, L, R>, std::invoke_result_t<std::bit_xor<>&, L, R>>; template<class L, class R = L> concept addition_assignable = weakly_addition_assignable<L, R> && weakly_addition_assignable<std::remove_cvref_t<std::invoke_result_t<std::plus<>&, L, R>>, R> && weakly_addition_assignable<L, std::invoke_result_t<std::plus<>&, L, R>> && weakly_addition_assignable<std::remove_cvref_t<std::invoke_result_t<std::plus<>&, L, R>>, std::invoke_result_t<std::plus<>&, L, R>>; template<class L, class R = L> concept subtraction_assignable = weakly_subtraction_assignable<L, R> && weakly_subtraction_assignable<std::remove_cvref_t<std::invoke_result_t<std::minus<>&, L, R>>, R> && weakly_subtraction_assignable<L, std::invoke_result_t<std::minus<>&, L, R>> && weakly_subtraction_assignable<std::remove_cvref_t<std::invoke_result_t<std::minus<>&, L, R>>, std::invoke_result_t<std::minus<>&, L, R>>; template<class L, class R = L> concept multipliation_assignalbe = weakly_multipliation_assignalbe<L, R> && weakly_multipliation_assignalbe<std::remove_cvref_t<std::invoke_result_t<std::multiplies<>&, L, R>>, R> && weakly_multipliation_assignalbe<L, std::invoke_result_t<std::multiplies<>&, L, R>> && weakly_multipliation_assignalbe<std::remove_cvref_t<std::invoke_result_t<std::multiplies<>&, L, R>>, std::invoke_result_t<std::multiplies<>&, L, R>>; template<class L, class R = L> concept division_assignable = weakly_division_assignable<L, R> && weakly_division_assignable<std::remove_cvref_t<std::invoke_result_t<std::divides<>&, L, R>>, R> && weakly_division_assignable<L, std::invoke_result_t<std::divides<>&, L, R>> && weakly_division_assignable<std::remove_cvref_t<std::invoke_result_t<std::divides<>&, L, R>>, std::invoke_result_t<std::divides<>&, L, R>>; template<class L, class R = L> concept remainder_assignable = weakly_remainder_assignable<L, R> && weakly_remainder_assignable<std::remove_cvref_t<std::invoke_result_t<std::modulus<>&, L, R>>, R> && weakly_remainder_assignable<L, std::invoke_result_t<std::modulus<>&, L, R>> && weakly_remainder_assignable<std::remove_cvref_t<std::invoke_result_t<std::modulus<>&, L, R>>, std::invoke_result_t<std::modulus<>&, L, R>>; template<class T> concept weakly_incrementable = std::movable<T> && requires (T v) { { ++v } -> std::same_as<T&>; v++; }; template<class T> concept weakly_decrementable = std::movable<T> && requires (T v) { { --v } -> std::same_as<T&>; v--; }; template<class T> concept incrementable = std::regular<T> && weakly_incrementable<T> && requires (T v) { { v++ } -> std::same_as<T>; }; template<class T> concept decrementable = std::regular<T> && weakly_decrementable<T> && requires (T v) { { v-- } -> std::same_as<T>; }; template<class L, class R = L> concept weakly_arithmetic_operable = weakly_addable<L, R> && weakly_subtractable<L, R> && weakly_multipliable<L, R> && weakly_divisable<L, R>; template<class L, class R = L> concept weakly_arithmetic_operation_assignable = weakly_addition_assignable<L, R> && weakly_subtraction_assignable<L, R> && weakly_multipliation_assignalbe<L, R> && weakly_division_assignable<L, R>; template<class L, class R = L> concept arithmetic_operable = weakly_arithmetic_operable<L, R> && addable<L, R> && subtractable<L, R> && multipliable<L, R> && divisable<L, R>; template<class L, class R = L> concept arithmetic_operation_assignable = weakly_arithmetic_operation_assignable<L, R> && addition_assignable<L, R> && subtraction_assignable<L, R> && multipliation_assignalbe<L, R> && division_assignable<L, R>; template<class T> concept unary_addable = requires (T v) { { +v } -> std::same_as<T>; }; template<class T> concept unary_subtractable = requires (T v) { { -v } -> std::same_as<T>; }; template<class T> concept numeric = std::regular<T> && arithmetic_operable<T> && arithmetic_operation_assignable<T> && weakly_incrementable<T> && unary_addable<T> && unary_subtractable<T>; } // namespace internal } // namespace uni #line 15 "adaptor/internal/advanced_container.hpp" #line 2 "numeric/internal/mod.hpp" #line 6 "numeric/internal/mod.hpp" namespace uni { template<class T, class R> requires internal::remainder_calculable<T, R> && internal::subtractable<T, R> && internal::unary_subtractable<T> inline T mod(T x, const R& r) noexcept(NO_EXCEPT) { if(x >= 0) return x % r; x = -x % r; if(x != 0) x = r - x; return x; } } // namespace uni #line 2 "iterable/internal/operation_base.hpp" #line 5 "iterable/internal/operation_base.hpp" #include <iterator> #include <sstream> #include <numeric> #line 11 "iterable/internal/operation_base.hpp" namespace uni { template<std::input_iterator I, std::sentinel_for<I> S> std::string join(I first, S last, const char* sep = "") noexcept(NO_EXCEPT) { if(first == last) return ""; std::ostringstream res; while(true) { res << *first; std::ranges::advance(first, 1); if(first == last) break; res << sep; } return res.str(); } template<std::ranges::input_range R> std::string join(R&& range, const char* sep = "") noexcept(NO_EXCEPT) { return join(ALL(range), sep); } template<class I, class T = std::iter_value_t<I>> requires std::sentinel_for<I, I> T sum(I first, I last, const T& base = T()) noexcept(NO_EXCEPT) { return std::accumulate(first, last, base); } template<std::ranges::input_range R, class T = std::ranges::range_value_t<R>> auto sum(R&& range, T base = T()) noexcept(NO_EXCEPT) { auto&& r = range | std::views::common; return sum(ALL(r), base); } } // namesapce uni #line 18 "adaptor/internal/advanced_container.hpp" #define UNI_ADVANCED_CONTAINER_OPERATOR(op_assign, op, concepts) \ auto& operator op_assign(const value_type& v) noexcept(NO_EXCEPT) \ requires concepts<value_type> \ { \ if constexpr(concepts<Base, value_type>) { \ this->Base::operator op_assign(v); \ } \ else { \ REP(itr, ALL(*this)) *itr op_assign v; \ } \ return *this; \ } \ \ auto& operator op_assign(const advanced_container& rhs) noexcept(NO_EXCEPT) \ requires concepts<value_type> \ { \ if constexpr(concepts<Base>) { \ this->Base::operator op_assign(*rhs._base()); \ } \ else { \ auto itr = std::ranges::begin(*this), rhs_itr = std::ranges::begin(rhs); \ auto end = std::ranges::end(*this); \ for(; itr != end; ++itr, ++rhs_itr) { \ *itr op_assign *rhs_itr; \ } \ } \ return *this; \ } \ \ template<class T = value_type> \ requires \ concepts<value_type> && \ (std::convertible_to<T, value_type> || std::same_as<T, advanced_container>) \ friend auto operator op(advanced_container lhs, const T& rhs) noexcept(NO_EXCEPT) { \ return lhs op_assign rhs; \ } \ \ template<class T = value_type> \ requires \ concepts<value_type> && std::convertible_to<T, value_type> \ friend auto operator op(const T& lhs, advanced_container rhs) noexcept(NO_EXCEPT) { \ return advanced_container(rhs.size(), lhs) op_assign rhs; \ } namespace uni { namespace internal { template<class Base> struct advanced_container : Base { private: inline Base* _base() noexcept(NO_EXCEPT) { return static_cast<Base*>(this); } inline const Base* _base() const noexcept(NO_EXCEPT) { return static_cast<const Base*>(this); } public: using Base::Base; advanced_container(const Base& base) : Base(base) {} using size_type = decltype(std::ranges::size(std::declval<Base>())); using value_type = Base::value_type; inline auto ssize() const noexcept(NO_EXCEPT) { return std::ranges::ssize(*this->_base()); } inline const auto& operator[](internal::size_t p) const noexcept(NO_EXCEPT) { p = p < 0 ? p + this->size() : p; assert(0 <= p && p < this->ssize()); return this->Base::operator[](p); } inline auto& operator[](internal::size_t p) noexcept(NO_EXCEPT) { p = p < 0 ? p + this->size() : p; assert(0 <= p && p < this->ssize()); return this->Base::operator[](p); } inline auto& fill(const value_type& v) noexcept(NO_EXCEPT) { std::ranges::fill(*this, v); return *this; } inline auto& swap(const size_type i, const size_type j) noexcept(NO_EXCEPT) { std::swap(this->operator[](i), this->operator[](j)); return *this; } inline auto& sort() noexcept(NO_EXCEPT) { std::ranges::sort(*this); return *this; } template<class F> inline auto& sort(F&& f) noexcept(NO_EXCEPT) { std::ranges::sort(*this, std::forward<F>(f)); return *this; } inline auto& stable_sort() noexcept(NO_EXCEPT) { std::ranges::stable_sort(*this); return *this; } template<class F> inline auto& stable_sort(F&& f) noexcept(NO_EXCEPT) { std::ranges::stable_sort(*this, std::forward<F>(f)); return *this; } inline auto& reverse() noexcept(NO_EXCEPT) { std::ranges::reverse(*this); return *this; } inline auto count(const value_type& v) const noexcept(NO_EXCEPT) { return std::ranges::count(*this, v); } template<class F> inline auto count_if(F&& f) const noexcept(NO_EXCEPT) { return std::ranges::count_if(*this, std::forward<F>(f)); } inline auto& resize(const size_type k) noexcept(NO_EXCEPT) { this->Base::resize(k); return *this; } inline auto& resize(const size_type k, const value_type v) noexcept(NO_EXCEPT) { this->Base::resize(k, v); return *this; } template<class F> inline auto& shuffle(F&& f) noexcept(NO_EXCEPT) { std::ranges::shuffle(*this, std::forward<F>(f)); return *this; } inline auto& unique() noexcept(NO_EXCEPT) { const auto rest = std::ranges::unique(*this); this->erase(ALL(rest)); return *this; } template<class T> inline auto binary_search(const T& v) noexcept(NO_EXCEPT) { return std::ranges::binary_search(*this, v); } template<class T> inline auto lower_bound(const T& v) noexcept(NO_EXCEPT) { return std::ranges::lower_bound(*this, v); } template<class T> inline auto upper_bound(const T& v) noexcept(NO_EXCEPT) { return std::ranges::upper_bound(*this, v); } inline auto join(const char* sep = "") noexcept(NO_EXCEPT) { return uni::join(*this, sep); } inline auto sum() const noexcept(NO_EXCEPT) { return uni::sum(*this); } inline auto max() const noexcept(NO_EXCEPT) { return std::ranges::max(*this->_base()); } inline auto min() const noexcept(NO_EXCEPT) { return std::ranges::min(*this); } inline auto begin() noexcept(NO_EXCEPT) { return std::ranges::begin(*this->_base()); } inline auto begin() const noexcept(NO_EXCEPT) { return std::ranges::begin(*this->_base()); } inline auto end() noexcept(NO_EXCEPT) { return std::ranges::end(*this->_base()); } inline auto end() const noexcept(NO_EXCEPT) { return std::ranges::end(*this->_base()); } UNI_ADVANCED_CONTAINER_OPERATOR(+=, +, internal::weakly_addition_assignable) UNI_ADVANCED_CONTAINER_OPERATOR(-=, -, internal::weakly_subtraction_assignable) UNI_ADVANCED_CONTAINER_OPERATOR(*=, *, internal::weakly_multipliation_assignalbe) UNI_ADVANCED_CONTAINER_OPERATOR(/=, /, internal::weakly_division_assignable) UNI_ADVANCED_CONTAINER_OPERATOR(%=, %, internal::weakly_remainder_assignable) UNI_ADVANCED_CONTAINER_OPERATOR(&=, &, internal::weakly_bitand_assignable) UNI_ADVANCED_CONTAINER_OPERATOR(|=, |, internal::weakly_bitor_assignable) UNI_ADVANCED_CONTAINER_OPERATOR(^=, ^, internal::weakly_bitxor_assignable) }; } // namespace internal } // namespace uni #undef UNI_ADVANCED_CONTAINER_OPERATOR #line 8 "adaptor/string.hpp" namespace uni { using string = internal::advanced_container<std::string>; } // namespace uni namespace std { template<> struct hash<uni::string> { inline auto operator()(const uni::string& key) const noexcept(NO_EXCEPT) { return std::hash<std::string>{}(static_cast<std::string>(key)); } }; }