#include "numeric/quotient_enumerator.hpp"
#pragma once #include <cassert> #include <tuple> #include "internal/dev_env.hpp" #include "internal/iterator.hpp" #include "internal/types.hpp" #include "numeric/arithmetic.hpp" namespace uni { template<class T, bool CEIL = false> struct quotient_enumerator { using value_type = std::tuple<T,T,T>; // (q, l, r) using size_type = T; private: T _n = 0, _n_impl = 0; size_type _size = -1; protected: using iterator_interface = internal::bidirectional_iterator_interface<const value_type>; public: // Enumerate tuple of (q, l, r), which means (floor/ceil)(_n/k) == q (l <= k <= r). quotient_enumerator(const T n) noexcept(NO_EXCEPT) : _n(n), _n_impl(n - CEIL) { assert(n > 0); } struct iterator; using const_iterator = iterator; inline auto begin() noexcept(NO_EXCEPT) { return iterator(this->_n_impl, 1); } inline auto end() noexcept(NO_EXCEPT) { return iterator(this->_n_impl, this->_n + 1); } inline auto rbegin() noexcept(NO_EXCEPT) { return std::make_reverse_iterator(this->end()); } inline auto rend() noexcept(NO_EXCEPT) { return std::make_reverse_iterator(this->begin()); } inline auto size() noexcept(NO_EXCEPT) { if(this->_size < 0) { size_type r = uni::sqrt_floor(this->_n_impl); this->_size = 2 * r - (this->_n_impl < r * (r + 1)) + CEIL; } return this->_size; } struct iterator : virtual iterator_interface { using value_type = quotient_enumerator::value_type; using reference = value_type; protected: T _n_impl = 0; T _q = 0, _l = 0, _r = 0; void _set_l(const T l) noexcept(NO_EXCEPT) { this->_l = l, this->_q = this->_n_impl / l; if(this->_q == 0) { if(CEIL) { if(l == this->_n_impl + 1) this->_r = l; } return; } this->_r = this->_n_impl / this->_q; } void _set_r(const T r) noexcept(NO_EXCEPT) { this->_r = r, this->_q = this->_n_impl / r; this->_l = this->_n_impl / (this->_q + 1) + 1; } public: iterator() noexcept = default; iterator(const T n, const T l) noexcept(NO_EXCEPT) : _n_impl(n) { this->_set_l(l); } friend inline bool operator==(const iterator& lhs, const iterator& rhs) noexcept(NO_EXCEPT) { return lhs._l == rhs._l; } inline value_type operator*() const noexcept(NO_EXCEPT) { return { this->_q + CEIL, this->_l, this->_r }; } inline auto& operator++() noexcept(NO_EXCEPT) { this->_set_l(this->_r + 1); return *this; } inline auto& operator--() noexcept(NO_EXCEPT) { this->_set_r(this->_l - 1); return *this; } inline auto operator++(int) noexcept(NO_EXCEPT) { const auto res = *this; this->_set_l(this->_r + 1); return res; } inline auto operator--(int) noexcept(NO_EXCEPT) { const auto res = *this; this->_set_r(this->_l - 1); return res; } }; }; } // namespace uni namespace std::ranges { template<class T> inline constexpr bool enable_borrowed_range<uni::quotient_enumerator<T>> = true; } // namespace std::ranges
#line 2 "numeric/quotient_enumerator.hpp" #include <cassert> #include <tuple> #line 2 "internal/dev_env.hpp" #ifdef LOCAL_JUDGE inline constexpr bool DEV_ENV = true; inline constexpr bool NO_EXCEPT = false; #else inline constexpr bool DEV_ENV = false; inline constexpr bool NO_EXCEPT = true; #endif // LOCAL_JUDGE #if __cplusplus >= 202100L #define CPP20 true #define CPP23 true #elif __cplusplus >= 202002L #define CPP20 true #define CPP23 false #else #define CPP20 false #define CPP23 false #endif #line 2 "internal/iterator.hpp" #include <utility> #include <type_traits> #include <iterator> #include <variant> #include <compare> #include <ranges> #line 13 "internal/iterator.hpp" #line 2 "internal/types.hpp" #include <cstdint> namespace uni { namespace internal { using size_t = std::int64_t; using int128_t = __int128_t; using uint128_t = __uint128_t; } // namesapce internal } // namespace uni #line 2 "internal/type_traits.hpp" #include <iostream> #include <vector> #line 7 "internal/type_traits.hpp" #include <algorithm> #line 9 "internal/type_traits.hpp" #line 12 "internal/type_traits.hpp" namespace uni { namespace internal { template<class... Ts> struct tuple_or_pair { using type = std::tuple<Ts...>; }; template<class T, class U> struct tuple_or_pair<T,U> { using type = std::pair<T, U>; }; template <class... Ts> using tuple_or_pair_t = typename tuple_or_pair<Ts...>::type; template<class T> constexpr std::underlying_type_t<T> to_underlying(const T& v) noexcept(NO_EXCEPT) { return static_cast<std::underlying_type_t<T>>(v); } template<class T, class... Ts> using are_same = std::conjunction<std::is_same<T, Ts>...>; template<class T, class... Ts> inline constexpr bool are_same_v = are_same<T, Ts...>::value; template<class T, class... Ts> using is_same_as_any_of = std::disjunction<std::is_same<T, Ts>...>; template<class T, class... Ts> inline constexpr bool is_same_as_any_of_v = is_same_as_any_of<T, Ts...>::value; template<class T, class... Ts> concept same_as_any_of = is_same_as_any_of_v<T, Ts...>; template<class Base, class... Derived> using is_base_of_all = std::conjunction<std::is_base_of<Base, Derived>...>; template<class Base, class... Derived> inline constexpr bool is_base_of_all_v = is_base_of_all<Base, Derived...>::value; template<class Base, class... Derived> using is_base_of_any = std::disjunction<std::is_base_of<Base, Derived>...>; template<class Base, class... Derived> inline constexpr bool is_base_of_any_v = is_base_of_any<Base, Derived...>::value; template<class T> struct remove_cvref { using type = typename std::remove_cv_t<std::remove_reference_t<T>>; }; template<class T> using remove_cvref_t = typename remove_cvref<T>::type; template<class T> struct literal_operator { static constexpr const char* value = ""; }; template<> struct literal_operator<unsigned> { static constexpr const char* value = "U"; }; template<> struct literal_operator<long> { static constexpr const char* value = "L"; }; template<> struct literal_operator<unsigned long> { static constexpr const char* value = "UL"; }; template<> struct literal_operator<long long> { static constexpr const char* value = "LL"; }; template<> struct literal_operator<unsigned long long> { static constexpr const char* value = "ULL"; }; template<> struct literal_operator<float> { static constexpr const char* value = "F"; }; template<> struct literal_operator<double> { static constexpr const char* value = "D"; }; template<> struct literal_operator<long double> { static constexpr const char* value = "LD"; }; #ifdef __SIZEOF_INT128__ template<> struct literal_operator<__int128_t> { static constexpr const char* value = "LLL"; }; template<> struct literal_operator<__uint128_t> { static constexpr const char* value = "ULLL"; }; #endif template<class T> inline constexpr auto literal_operator_v = literal_operator<T>::value; template <std::size_t N, typename... Types> struct nth_type {}; template <class Head, class... Tail> struct nth_type<0, Head, Tail...> { using type = Head; }; template <std::size_t N, class Head, class... Tail> struct nth_type<N, Head, Tail...> : public nth_type<N - 1, Tail...> {}; template <std::size_t N, typename... Types> using nth_type_t = typename nth_type<N, Types...>::type; template<template <class...> class, class> struct is_template_of : std::false_type {}; template<template <class...> class Template, class... Args> struct is_template_of<Template, Template<Args...>> : std::true_type {}; template<template <class...> class Template, class Type> inline constexpr bool is_template_of_v = is_template_of<Template, Type>::value; template<class Type, template <class...> class Template> concept substituted_from = is_template_of_v<Template, Type>; template<template <class...> class Base, class Derived> struct _is_basic_tempalte_of { template<class... Ts> static constexpr std::true_type test(const Base<Ts...> *); static constexpr std::false_type test(...); using type = decltype(test(std::declval<Derived*>())); }; template<template <class...> class Base, class Derived> using is_basic_tempalte_of = _is_basic_tempalte_of<Base, Derived>::type; template<template <class...> class Base, class Derived> inline constexpr bool is_basic_tempalte_of_v = is_basic_tempalte_of<Base, Derived>::value; template<class Derived, template <class...> class Base> concept derived_from_template = is_basic_tempalte_of_v<Base, Derived>; template<class T> struct is_loggable { template<class U> static constexpr auto External(U &&v) -> decltype(_debug(v), std::true_type()); static constexpr std::false_type External(...); template<class U> static constexpr auto Member(U &&v) -> decltype(v._debug(), std::true_type()); static constexpr std::false_type Member(...); static constexpr bool value = ( decltype(External(std::declval<T>()))::value || decltype(Member(std::declval<T>()))::value ); }; template<class T> inline constexpr auto is_loggable_v = is_loggable<T>::value; template<class T> concept loggable = is_loggable_v<T>; template<class T> struct _has_iterator { template<class U> static constexpr auto ADL(U &&v) -> decltype(begin(v), end(v), std::true_type()); static constexpr std::false_type ADL(...); template<class U> static constexpr auto STL(U &&v) -> decltype(std::begin(v), std::end(v), std::true_type()); static constexpr std::false_type STL(...); template<class U> static constexpr auto Member(U &&v) -> decltype(v.begin(), v.end(), std::true_type()); static constexpr std::false_type Member(...); }; template<class T> struct has_iterator { struct ADL : decltype(_has_iterator<T>::ADL(std::declval<T>())) {}; struct STL : decltype(_has_iterator<T>::STL(std::declval<T>())) {}; struct Member : decltype(_has_iterator<T>::Member(std::declval<T>())) {}; static constexpr auto adl_v = ADL::value; static constexpr auto stl_v = STL::value; static constexpr auto member_v = Member::value; }; template<class T> struct is_iterable { static constexpr bool value = has_iterator<T>::adl_v || has_iterator<T>::stl_v || has_iterator<T>::member_v; }; template<class T> inline constexpr auto is_iterable_v = is_iterable<T>::value; template<class T> concept iterable = is_iterable_v<T>; namespace iterator_resolver { template<class T> inline constexpr auto begin(T&& v) noexcept(NO_EXCEPT) { static_assert(is_iterable_v<T>); if constexpr(has_iterator<T>::member_v) { return v.begin(); } else { // ADL using std::begin; return begin(std::forward<T>(v)); } } template<class T> inline constexpr auto end(T&& v) noexcept(NO_EXCEPT) { static_assert(is_iterable_v<T>); if constexpr(has_iterator<T>::member_v) { return v.end(); } else { // ADL using std::end; return end(std::forward<T>(v)); } } }; template<class C> using iterator_t = decltype(iterator_resolver::begin(std::declval<C&>())); template<class C> using container_size_t = decltype(std::size(std::declval<C&>())); template<bool Const, class T> using maybe_const_t = std::conditional_t<Const, const T, T>; template<class T> using with_ref = T&; template<class T> concept can_reference = requires { typename with_ref<T>; }; } // namespace internal } // namespace uni #line 16 "internal/iterator.hpp" namespace uni { namespace internal { template<class T> struct iterator_interface { using iterator_category = std::output_iterator_tag; using difference_type = size_t; using value_type = T; using pointer = T*; using reference = T&; // virtual T operator*() const noexcept(NO_EXCEPT) { return 0; }; }; template<class T> struct forward_iterator : iterator_interface<T> { using iterator_category = std::forward_iterator_tag; // virtual bidirectional_iterator_interface& operator++() = 0; }; template<class T> struct bidirectional_iterator_interface : forward_iterator<T> { using iterator_category = std::bidirectional_iterator_tag; // virtual bidirectional_iterator_interface& operator--() = 0; }; template<class T> struct random_access_iterator_base : bidirectional_iterator_interface<T> { using iterator_category = std::random_access_iterator_tag; using difference_type = typename bidirectional_iterator_interface<T>::difference_type; public: // virtual random_access_iterator_base& operator+=(const difference_type count) = 0; // virtual random_access_iterator_base& operator-=(const difference_type count) = 0; friend inline random_access_iterator_base operator+(random_access_iterator_base itr, const difference_type count) noexcept(NO_EXCEPT) { return itr += count, itr; } friend inline random_access_iterator_base operator-(random_access_iterator_base itr, const difference_type count) noexcept(NO_EXCEPT) { return itr -= count, itr; } }; template<class T, class Container, class Derived> struct container_iterator_interface : random_access_iterator_base<T> { using difference_type = std::make_signed_t<typename Container::size_type>; private: using derived = std::remove_cvref_t<Derived>; Container* _ref; difference_type _pos; static_assert(std::three_way_comparable<difference_type>); inline auto* _derived() noexcept(NO_EXCEPT) { return static_cast<derived*>(this); } inline const auto* _derived() const noexcept(NO_EXCEPT) { return static_cast<const derived*>(this); } public: container_iterator_interface() noexcept = default; container_iterator_interface(Container *const ref, const difference_type pos) noexcept(NO_EXCEPT) : _ref(ref), _pos(pos) {} inline auto ref() const noexcept(NO_EXCEPT) { return this->_ref; } inline auto pos() const noexcept(NO_EXCEPT) { return this->_pos; } inline auto& pos() { return this->_pos; } inline auto& operator++() noexcept(NO_EXCEPT) { return ++this->_pos, *this->_derived(); } inline auto& operator--() noexcept(NO_EXCEPT) { return --this->_pos, *this->_derived(); } inline auto operator++(int) noexcept(NO_EXCEPT) { auto res = *this->_derived(); return ++this->_pos, res; } inline auto operator--(int) noexcept(NO_EXCEPT) { auto res = *this->_derived(); return --this->_pos, res; } inline auto& operator+=(const difference_type count) noexcept(NO_EXCEPT) { return this->_pos += count, *this->_derived(); } inline auto& operator-=(const difference_type count) noexcept(NO_EXCEPT) { return this->_pos -= count, *this->_derived(); } inline auto operator*() const noexcept(NO_EXCEPT) { return this->ref()->get(this->_pos); } inline auto operator[](const difference_type count) const noexcept(NO_EXCEPT) { return *(*this->_derived() + count); } inline auto operator-(const derived& other) const noexcept(NO_EXCEPT) { return this->_pos - other._pos; } friend inline bool operator==(const derived& lhs, const derived& rhs) noexcept(NO_EXCEPT) { if(lhs.ref() == rhs.ref()) return lhs._pos == rhs._pos; return false; } friend inline std::partial_ordering operator<=>(const derived& lhs, const derived& rhs) noexcept(NO_EXCEPT) { if(lhs.ref() != rhs.ref()) return std::partial_ordering::unordered; return lhs._pos <=> rhs._pos; } }; namespace iterator_impl { template<class... Tags> using is_all_random_access_iterator = is_base_of_all<std::random_access_iterator_tag,Tags...>; template<class... Tags> using is_all_bidirectional_iterator = is_base_of_all<std::bidirectional_iterator_tag,Tags...>; template<class... Tags> using is_all_forward_iterator = is_base_of_all<std::forward_iterator_tag,Tags...>; template<class... Tags> using is_all_input_iterator = is_base_of_all<std::input_iterator_tag,Tags...>; template<class... Tags> constexpr auto _most_primitive_iterator_tag() { if constexpr(is_all_random_access_iterator<Tags...>::value) { return std::random_access_iterator_tag{}; } else if constexpr(is_all_bidirectional_iterator<Tags...>::value) { return std::bidirectional_iterator_tag{}; } else if constexpr(is_all_forward_iterator<Tags...>::value) { return std::forward_iterator_tag{}; } else { return std::input_iterator_tag{}; } } } // namespace iterator_impl template<class... Tags> using most_primitive_iterator_tag = decltype(iterator_impl::_most_primitive_iterator_tag<Tags...>()); template<class T, class = void> struct is_iterator { static constexpr bool value = false; }; template<class T> struct is_iterator<T, typename std::enable_if<!std::is_same<typename std::iterator_traits<T>::value_type, void>::value>::type> { static constexpr bool value = true; }; template<class T> inline constexpr bool is_iterator_v = is_iterator<T>::value; template<class T> using is_iterator_t = std::enable_if_t<is_iterator_v<T>>; template<class T> using iota_diff_t = std::make_signed_t<T>; } // namespace internal } // namespace uni #line 10 "numeric/quotient_enumerator.hpp" #line 2 "numeric/arithmetic.hpp" #line 5 "numeric/arithmetic.hpp" #include <cstring> #line 7 "numeric/arithmetic.hpp" #include <string> #include <functional> #line 10 "numeric/arithmetic.hpp" #include <optional> #line 12 "numeric/arithmetic.hpp" #include <concepts> #include <bit> #include <atcoder/math> #line 2 "snippet/aliases.hpp" #line 8 "snippet/aliases.hpp" #line 2 "snippet/internal/types.hpp" #line 4 "snippet/internal/types.hpp" namespace uni { using i16 = std::int16_t; using u16 = std::uint16_t; using i32 = std::int32_t; using u32 = std::uint32_t; using i64 = std::int64_t; using u64 = std::uint64_t; #ifdef __GNUC__ using i128 = __int128_t; using u128 = __uint128_t; using f128 = __float128; #endif using uint = unsigned; using ll = long long; using ull = unsigned long long; using ld = long double; } // namespace uni #line 12 "snippet/aliases.hpp" #define until(...) while(!(__VA_ARGS__)) #define CONTINUE(...) { __VA_ARGS__; continue; } #define BREAK(...) { __VA_ARGS__; break; } #define ALL(x) std::ranges::begin((x)),std::ranges::end((x)) #define RALL(x) std::ranges::rbegin((x)),std::ranges::rend((x)) #define $F first #define $S second namespace uni { constexpr char LN = '\n'; constexpr char SPC = ' '; constexpr std::pair<int,int> DIRS4[] = { { -1, 0 }, { 0, 1 }, { 1, 0 }, { 0, -1 } }; constexpr std::pair<int,int> DIRS4P[] = { { -1, 0 }, { 0, 1 }, { 1, 0 }, { 0, -1 }, { 0, 0 } }; constexpr std::pair<int,int> DIRS8[] = { { -1, 0 }, { -1, 1 }, { 0, 1 }, { 1, 1 }, { 1, 0 }, { 1, -1 }, { 0, -1 }, { -1, -1 } }; constexpr std::pair<int,int> DIRS8P[] = { { -1, 0 }, { -1, 1 }, { 0, 1 }, { 1, 1 }, { 1, 0 }, { 1, -1 }, { 0, -1 }, { -1, -1 }, { 0, 0 } }; template<class T> using spair = std::pair<T,T>; } // namespace uni namespace std { using bit_reference = std::vector<bool>::reference; bit_reference operator |= (bit_reference a, const bool b) noexcept(NO_EXCEPT) { return a = a | b; } bit_reference operator &= (bit_reference a, const bool b) noexcept(NO_EXCEPT) { return a = a & b; } } #line 2 "snippet/iterations.hpp" #line 2 "macro/overload.hpp" #define $OVERLOAD2(arg0, arg1, cmd, ...) cmd #define $OVERLOAD3(arg0, arg1, arg2, cmd, ...) cmd #define $OVERLOAD4(arg0, arg1, arg2, arg3, cmd, ...) cmd #define $OVERLOAD5(arg0, arg1, arg2, arg3, arg4, cmd, ...) cmd #define $OVERLOAD6(arg0, arg1, arg2, arg3, arg4, arg5, cmd, ...) cmd #line 2 "macro/basic.hpp" #define TO_STRING_AUX(x) #x #define TO_STRING(x) TO_STRING_AUX(x) #define CONCAT_AUX(x, y) x##y #define CONCAT(x, y) CONCAT_AUX(x, y) #define UNPAREN_AUX(...) __VA_ARGS__ #define UNPAREN(...) __VA_ARGS__ #line 6 "snippet/iterations.hpp" #define LOOP(n) REPI(CONCAT(_$, __COUNTER__), n) #define REPI(i,n) for(std::remove_cvref_t<decltype(n)> i=0, CONCAT(i, $)=(n); i<CONCAT(i, $); ++i) #define REPF(i,l,r) for(std::common_type_t<std::remove_cvref_t<decltype(l)>,std::remove_cvref_t<decltype(r)>> i=(l), CONCAT(i, $)=(r); i<CONCAT(i, $); ++i) #define REPIS(i,l,r,s) for(std::common_type_t<std::remove_cvref_t<decltype(l)>,std::remove_cvref_t<decltype(r)>,std::remove_cvref_t<decltype(s)>> i=(l), CONCAT(i, $)=(r); i<CONCAT(i, $); i+=(s)) #define REPR(i,n) for(auto i=(n); --i>=0;) #define REPB(i,l,r) for(std::common_type_t<std::remove_cvref_t<decltype(l)>,std::remove_cvref_t<decltype(r)>> i=(r), CONCAT(i, $)=(l); --i>=CONCAT(i, $);) #define REPRS(i,l,r,s) for(std::common_type_t<std::remove_cvref_t<decltype(l)>,std::remove_cvref_t<decltype(r)>,std::remove_cvref_t<decltype(s)>> i=(l)+((r)-(l)-1)/(s)*(s), CONCAT(i, $)=(l); i>=CONCAT(i, $); (i-=(s))) #define REP(...) $OVERLOAD4(__VA_ARGS__, REPIS, REPF, REPI, LOOP)(__VA_ARGS__) #define REPD(...) $OVERLOAD4(__VA_ARGS__, REPRS, REPB, REPR)(__VA_ARGS__) #define FORO(i,n) for(int i=0, CONCAT(i, $)=static_cast<int>(n); i<=CONCAT(i, $); ++i) #define FORI(i,l,r) for(std::common_type_t<std::remove_cvref_t<decltype(l)>,std::remove_cvref_t<decltype(r)>> i=(l), CONCAT(i, $)=(r); i<=CONCAT(i, $); ++i) #define FORIS(i,l,r,s) for(std::common_type_t<std::remove_cvref_t<decltype(l)>,std::remove_cvref_t<decltype(r)>,std::remove_cvref_t<decltype(s)>> i=(l), CONCAT(i, $)=(r); i<=CONCAT(i, $); i+=(s)) #define FORRO(i,n) for(auto i=(n); i>=0; --i) #define FORR(i,l,r) for(std::common_type_t<std::remove_cvref_t<decltype(l)>,std::remove_cvref_t<decltype(r)>> i=(r), CONCAT(i, $)=(l); i>=CONCAT(i, $); --i) #define FORRS(i,l,r,s) for(std::common_type_t<std::remove_cvref_t<decltype(l)>,std::remove_cvref_t<decltype(r)>,std::remove_cvref_t<decltype(s)>> i=(l)+((r)-(l))/(s)*(s), CONCAT(i, $)=(l); i>=CONCAT(i, $); i-=(s)) #define FOR(...) $OVERLOAD4(__VA_ARGS__, FORIS, FORI, FORO)(__VA_ARGS__) #define FORD(...) $OVERLOAD4(__VA_ARGS__, FORRS, FORR, FORRO)(__VA_ARGS__) #define ITR1(e0,v) for(const auto &e0 : (v)) #define ITRP1(e0,v) for(auto e0 : (v)) #define ITRR1(e0,v) for(auto &e0 : (v)) #define ITR2(e0,e1,v) for(const auto [e0, e1] : (v)) #define ITRP2(e0,e1,v) for(auto [e0, e1] : (v)) #define ITRR2(e0,e1,v) for(auto &[e0, e1] : (v)) #define ITR3(e0,e1,e2,v) for(const auto [e0, e1, e2] : (v)) #define ITRP3(e0,e1,e2,v) for(auto [e0, e1, e2] : (v)) #define ITRR3(e0,e1,e2,v) for(auto &[e0, e1, e2] : (v)) #define ITR4(e0,e1,e2,e3,v) for(const auto [e0, e1, e2, e3] : (v)) #define ITRP4(e0,e1,e2,e3,v) for(auto [e0, e1, e2, e3] : (v)) #define ITRR4(e0,e1,e2,e3,v) for(auto &[e0, e1, e2, e3] : (v)) #define ITR5(e0,e1,e2,e3,e4,v) for(const auto [e0, e1, e2, e3, e4] : (v)) #define ITRP5(e0,e1,e2,e3,e4,v) for(auto [e0, e1, e2, e3, e4] : (v)) #define ITRR5(e0,e1,e2,e3,e4,v) for(auto &[e0, e1, e2, e3, e4] : (v)) #define ITR(...) $OVERLOAD6(__VA_ARGS__, ITR5, ITR4, ITR3, ITR2, ITR1)(__VA_ARGS__) #define ITRP(...) $OVERLOAD6(__VA_ARGS__, ITRP5, ITRP4, ITRP3, ITRP2, ITRP1)(__VA_ARGS__) #define ITRR(...) $OVERLOAD6(__VA_ARGS__, ITRR5, ITRR4, ITRR3, ITRR2, ITRR1)(__VA_ARGS__) #line 21 "numeric/arithmetic.hpp" #line 2 "internal/concepts.hpp" #line 7 "internal/concepts.hpp" #include <limits> #line 9 "internal/concepts.hpp" namespace uni { namespace internal { template<class R, class T> concept convertibel_range = std::convertible_to<std::ranges::range_value_t<R>, T>; template<class T, class V> concept item_or_convertible_range = std::convertible_to<T, V> || convertibel_range<T, V>; template<class Structure> concept available = requires () { typename Structure; }; template< template<class...> class Structure, class... TemplateParameters > concept available_with = available<Structure<TemplateParameters...>>; template<class T> concept arithmetic = std::is_arithmetic_v<T>; template<class T> concept pointer = std::is_pointer_v<T>; template<class T> concept structural = std::is_class_v<T>; template<class Large, class Small> concept has_double_digits_of = (std::numeric_limits<Large>::digits == 2 * std::numeric_limits<Small>::digits); template<class Large, class Small> concept has_more_digits_than = (std::numeric_limits<Large>::digits > std::numeric_limits<Small>::digits); template<class Large, class Small> concept has_or_more_digits_than = (std::numeric_limits<Large>::digits >= std::numeric_limits<Small>::digits); template<class T> concept has_static_zero = requires { T::zero; }; template<class T> concept has_static_one = requires { T::one; }; template<class L, class R = L> concept weakly_bitand_calcurable = requires (L lhs, R rhs) { lhs & rhs; }; template<class L, class R = L> concept weakly_bitor_calcurable = requires (L lhs, R rhs) { lhs | rhs; }; template<class L, class R = L> concept weakly_bitxor_calcurable = requires (L lhs, R rhs) { lhs ^ rhs; }; template<class L, class R = L> concept weakly_addable = requires (L lhs, R rhs) { lhs + rhs; }; template<class L, class R = L> concept weakly_subtractable = requires (L lhs, R rhs) { lhs - rhs; }; template<class L, class R = L> concept weakly_multipliable = requires (L lhs, R rhs) { lhs * rhs; }; template<class L, class R = L> concept weakly_divisable = requires (L lhs, R rhs) { lhs / rhs; }; template<class L, class R = L> concept weakly_remainder_calculable = requires (L lhs, R rhs) { lhs % rhs; }; template<class L, class R = L> concept weakly_bitand_assignable = requires (L lhs, R rhs) { lhs += rhs; }; template<class L, class R = L> concept weakly_bitor_assignable = requires (L lhs, R rhs) { lhs |= rhs; }; template<class L, class R = L> concept weakly_bitxor_assignable = requires (L lhs, R rhs) { lhs ^= rhs; }; template<class L, class R = L> concept weakly_addition_assignable = requires (L lhs, R rhs) { lhs += rhs; }; template<class L, class R = L> concept weakly_subtraction_assignable = requires (L lhs, R rhs) { lhs -= rhs; }; template<class L, class R = L> concept weakly_multipliation_assignalbe = requires (L lhs, R rhs) { lhs *= rhs; }; template<class L, class R = L> concept weakly_division_assignable = requires (L lhs, R rhs) { lhs /= rhs; }; template<class L, class R = L> concept weakly_remainder_assignable = requires (L lhs, R rhs) { lhs /= rhs; }; template<class L, class R = L> concept bitand_calculable = weakly_bitand_calcurable<L, R> && weakly_bitand_calcurable<std::invoke_result_t<std::bit_and<>&, L, R>, R> && weakly_bitand_calcurable<L, std::invoke_result_t<std::bit_and<>&, L, R>> && weakly_bitand_calcurable<std::invoke_result_t<std::bit_and<>&, L, R>, std::invoke_result_t<std::bit_and<>&, L, R>>; template<class L, class R = L> concept bitor_calculable = weakly_bitor_calcurable<L, R> && weakly_bitor_calcurable<std::invoke_result_t<std::bit_or<>&, L, R>, R> && weakly_bitor_calcurable<L, std::invoke_result_t<std::bit_or<>&, L, R>> && weakly_bitor_calcurable<std::invoke_result_t<std::bit_or<>&, L, R>, std::invoke_result_t<std::bit_or<>&, L, R>>; template<class L, class R = L> concept bitxor_calculable = weakly_bitxor_calcurable<L, R> && weakly_bitxor_calcurable<std::invoke_result_t<std::bit_xor<>&, L, R>, R> && weakly_bitxor_calcurable<L, std::invoke_result_t<std::bit_xor<>&, L, R>> && weakly_bitxor_calcurable<std::invoke_result_t<std::bit_xor<>&, L, R>, std::invoke_result_t<std::bit_xor<>&, L, R>>; template<class L, class R = L> concept addable = weakly_addable<L, R> && weakly_addable<std::invoke_result_t<std::plus<>&, L, R>, R> && weakly_addable<L, std::invoke_result_t<std::plus<>&, L, R>> && weakly_addable<std::invoke_result_t<std::plus<>&, L, R>, std::invoke_result_t<std::plus<>&, L, R>>; template<class L, class R = L> concept subtractable = weakly_subtractable<L, R> && weakly_subtractable<std::invoke_result_t<std::minus<>&, L, R>, R> && weakly_subtractable<L, std::invoke_result_t<std::minus<>&, L, R>> && weakly_subtractable<std::invoke_result_t<std::minus<>&, L, R>, std::invoke_result_t<std::minus<>&, L, R>>; template<class L, class R = L> concept multipliable = weakly_multipliable<L, R> && weakly_multipliable<std::invoke_result_t<std::multiplies<>&, L, R>, R> && weakly_multipliable<L, std::invoke_result_t<std::multiplies<>&, L, R>> && weakly_multipliable<std::invoke_result_t<std::multiplies<>&, L, R>, std::invoke_result_t<std::multiplies<>&, L, R>>; template<class L, class R = L> concept divisable = weakly_divisable<L, R> && weakly_divisable<std::invoke_result_t<std::divides<>&, L, R>, R> && weakly_divisable<L, std::invoke_result_t<std::divides<>&, L, R>> && weakly_divisable<std::invoke_result_t<std::divides<>&, L, R>, std::invoke_result_t<std::divides<>&, L, R>>; template<class L, class R = L> concept remainder_calculable = weakly_remainder_calculable<L, R> && weakly_remainder_calculable<std::invoke_result_t<std::modulus<>&, L, R>, R> && weakly_remainder_calculable<L, std::invoke_result_t<std::modulus<>&, L, R>> && weakly_remainder_calculable<std::invoke_result_t<std::modulus<>&, L, R>, std::invoke_result_t<std::modulus<>&, L, R>>; template<class L, class R = L> concept bitand_assignable = weakly_bitand_assignable<L, R> && weakly_bitand_assignable<std::invoke_result_t<std::bit_and<>&, L, R>, R> && weakly_bitand_assignable<L, std::invoke_result_t<std::bit_and<>&, L, R>> && weakly_bitand_assignable<std::invoke_result_t<std::bit_and<>&, L, R>, std::invoke_result_t<std::bit_and<>&, L, R>>; template<class L, class R = L> concept bitor_assignable = weakly_bitor_calcurable<L, R> && weakly_bitor_calcurable<std::invoke_result_t<std::bit_or<>&, L, R>, R> && weakly_bitor_calcurable<L, std::invoke_result_t<std::bit_or<>&, L, R>> && weakly_bitor_calcurable<std::invoke_result_t<std::bit_or<>&, L, R>, std::invoke_result_t<std::bit_or<>&, L, R>>; template<class L, class R = L> concept bitxor_assignable = weakly_bitxor_calcurable<L, R> && weakly_bitxor_calcurable<std::invoke_result_t<std::bit_xor<>&, L, R>, R> && weakly_bitxor_calcurable<L, std::invoke_result_t<std::bit_xor<>&, L, R>> && weakly_bitxor_calcurable<std::invoke_result_t<std::bit_xor<>&, L, R>, std::invoke_result_t<std::bit_xor<>&, L, R>>; template<class L, class R = L> concept addition_assignable = weakly_addition_assignable<L, R> && weakly_addition_assignable<std::remove_cvref_t<std::invoke_result_t<std::plus<>&, L, R>>, R> && weakly_addition_assignable<L, std::invoke_result_t<std::plus<>&, L, R>> && weakly_addition_assignable<std::remove_cvref_t<std::invoke_result_t<std::plus<>&, L, R>>, std::invoke_result_t<std::plus<>&, L, R>>; template<class L, class R = L> concept subtraction_assignable = weakly_subtraction_assignable<L, R> && weakly_subtraction_assignable<std::remove_cvref_t<std::invoke_result_t<std::minus<>&, L, R>>, R> && weakly_subtraction_assignable<L, std::invoke_result_t<std::minus<>&, L, R>> && weakly_subtraction_assignable<std::remove_cvref_t<std::invoke_result_t<std::minus<>&, L, R>>, std::invoke_result_t<std::minus<>&, L, R>>; template<class L, class R = L> concept multipliation_assignalbe = weakly_multipliation_assignalbe<L, R> && weakly_multipliation_assignalbe<std::remove_cvref_t<std::invoke_result_t<std::multiplies<>&, L, R>>, R> && weakly_multipliation_assignalbe<L, std::invoke_result_t<std::multiplies<>&, L, R>> && weakly_multipliation_assignalbe<std::remove_cvref_t<std::invoke_result_t<std::multiplies<>&, L, R>>, std::invoke_result_t<std::multiplies<>&, L, R>>; template<class L, class R = L> concept division_assignable = weakly_division_assignable<L, R> && weakly_division_assignable<std::remove_cvref_t<std::invoke_result_t<std::divides<>&, L, R>>, R> && weakly_division_assignable<L, std::invoke_result_t<std::divides<>&, L, R>> && weakly_division_assignable<std::remove_cvref_t<std::invoke_result_t<std::divides<>&, L, R>>, std::invoke_result_t<std::divides<>&, L, R>>; template<class L, class R = L> concept remainder_assignable = weakly_remainder_assignable<L, R> && weakly_remainder_assignable<std::remove_cvref_t<std::invoke_result_t<std::modulus<>&, L, R>>, R> && weakly_remainder_assignable<L, std::invoke_result_t<std::modulus<>&, L, R>> && weakly_remainder_assignable<std::remove_cvref_t<std::invoke_result_t<std::modulus<>&, L, R>>, std::invoke_result_t<std::modulus<>&, L, R>>; template<class T> concept weakly_incrementable = std::movable<T> && requires (T v) { { ++v } -> std::same_as<T&>; v++; }; template<class T> concept weakly_decrementable = std::movable<T> && requires (T v) { { --v } -> std::same_as<T&>; v--; }; template<class T> concept incrementable = std::regular<T> && weakly_incrementable<T> && requires (T v) { { v++ } -> std::same_as<T>; }; template<class T> concept decrementable = std::regular<T> && weakly_decrementable<T> && requires (T v) { { v-- } -> std::same_as<T>; }; template<class L, class R = L> concept weakly_arithmetic_operable = weakly_addable<L, R> && weakly_subtractable<L, R> && weakly_multipliable<L, R> && weakly_divisable<L, R>; template<class L, class R = L> concept weakly_arithmetic_operation_assignable = weakly_addition_assignable<L, R> && weakly_subtraction_assignable<L, R> && weakly_multipliation_assignalbe<L, R> && weakly_division_assignable<L, R>; template<class L, class R = L> concept arithmetic_operable = weakly_arithmetic_operable<L, R> && addable<L, R> && subtractable<L, R> && multipliable<L, R> && divisable<L, R>; template<class L, class R = L> concept arithmetic_operation_assignable = weakly_arithmetic_operation_assignable<L, R> && addition_assignable<L, R> && subtraction_assignable<L, R> && multipliation_assignalbe<L, R> && division_assignable<L, R>; template<class T> concept unary_addable = requires (T v) { { +v } -> std::same_as<T>; }; template<class T> concept unary_subtractable = requires (T v) { { -v } -> std::same_as<T>; }; template<class T> concept numeric = std::regular<T> && arithmetic_operable<T> && arithmetic_operation_assignable<T> && weakly_incrementable<T> && unary_addable<T> && unary_subtractable<T>; } // namespace internal } // namespace uni #line 25 "numeric/arithmetic.hpp" #line 2 "utility/internal/functional_base.hpp" namespace uni { template<class P> requires requires(P p) { p.first; p.second; } inline P swapped(P& pair) { return P{ pair.second, pair.first }; } } // namespace uni #line 27 "numeric/arithmetic.hpp" #line 2 "numeric/internal/number_base.hpp" #line 5 "numeric/internal/number_base.hpp" #include <cstddef> #include <string_view> #line 14 "numeric/internal/number_base.hpp" #line 18 "numeric/internal/number_base.hpp" #line 2 "adaptor/string.hpp" #line 6 "adaptor/string.hpp" #line 2 "adaptor/internal/advanced_container.hpp" #line 8 "adaptor/internal/advanced_container.hpp" #line 11 "adaptor/internal/advanced_container.hpp" #line 15 "adaptor/internal/advanced_container.hpp" #line 2 "numeric/internal/mod.hpp" #line 6 "numeric/internal/mod.hpp" namespace uni { template<class T, class R> requires internal::remainder_calculable<T, R> && internal::subtractable<T, R> && internal::unary_subtractable<T> inline T mod(T x, const R& r) noexcept(NO_EXCEPT) { if(x >= 0) return x % r; x = -x % r; if(x != 0) x = r - x; return x; } } // namespace uni #line 2 "iterable/internal/operation_base.hpp" #line 6 "iterable/internal/operation_base.hpp" #include <sstream> #include <numeric> #line 11 "iterable/internal/operation_base.hpp" namespace uni { template<std::input_iterator I, std::sentinel_for<I> S> std::string join(I first, S last, const char* sep = "") noexcept(NO_EXCEPT) { if(first == last) return ""; std::ostringstream res; while(true) { res << *first; std::ranges::advance(first, 1); if(first == last) break; res << sep; } return res.str(); } template<std::ranges::input_range R> std::string join(R&& range, const char* sep = "") noexcept(NO_EXCEPT) { return join(ALL(range), sep); } template<class I, class T = std::iter_value_t<I>> requires std::sentinel_for<I, I> T sum(I first, I last, const T& base = T()) noexcept(NO_EXCEPT) { return std::accumulate(first, last, base); } template<std::ranges::input_range R, class T = std::ranges::range_value_t<R>> auto sum(R&& range, T base = T()) noexcept(NO_EXCEPT) { auto&& r = range | std::views::common; return sum(ALL(r), base); } } // namesapce uni #line 18 "adaptor/internal/advanced_container.hpp" #define UNI_ADVANCED_CONTAINER_OPERATOR(op_assign, op, concepts) \ auto& operator op_assign(const value_type& v) noexcept(NO_EXCEPT) \ requires concepts<value_type> \ { \ if constexpr(concepts<Base, value_type>) { \ this->Base::operator op_assign(v); \ } \ else { \ REP(itr, ALL(*this)) *itr op_assign v; \ } \ return *this; \ } \ \ auto& operator op_assign(const advanced_container& rhs) noexcept(NO_EXCEPT) \ requires concepts<value_type> \ { \ if constexpr(concepts<Base>) { \ this->Base::operator op_assign(*rhs._base()); \ } \ else { \ auto itr = std::ranges::begin(*this), rhs_itr = std::ranges::begin(rhs); \ auto end = std::ranges::end(*this); \ for(; itr != end; ++itr, ++rhs_itr) { \ *itr op_assign *rhs_itr; \ } \ } \ return *this; \ } \ \ template<class T = value_type> \ requires \ concepts<value_type> && \ (std::convertible_to<T, value_type> || std::same_as<T, advanced_container>) \ friend auto operator op(advanced_container lhs, const T& rhs) noexcept(NO_EXCEPT) { \ return lhs op_assign rhs; \ } \ \ template<class T = value_type> \ requires \ concepts<value_type> && std::convertible_to<T, value_type> \ friend auto operator op(const T& lhs, advanced_container rhs) noexcept(NO_EXCEPT) { \ return advanced_container(rhs.size(), lhs) op_assign rhs; \ } namespace uni { namespace internal { template<class Base> struct advanced_container : Base { private: inline Base* _base() noexcept(NO_EXCEPT) { return static_cast<Base*>(this); } inline const Base* _base() const noexcept(NO_EXCEPT) { return static_cast<const Base*>(this); } public: using Base::Base; advanced_container(const Base& base) : Base(base) {} using size_type = decltype(std::ranges::size(std::declval<Base>())); using value_type = Base::value_type; inline auto ssize() const noexcept(NO_EXCEPT) { return std::ranges::ssize(*this->_base()); } inline const auto& operator[](internal::size_t p) const noexcept(NO_EXCEPT) { p = p < 0 ? p + this->size() : p; assert(0 <= p && p < this->ssize()); return this->Base::operator[](p); } inline auto& operator[](internal::size_t p) noexcept(NO_EXCEPT) { p = p < 0 ? p + this->size() : p; assert(0 <= p && p < this->ssize()); return this->Base::operator[](p); } inline auto& fill(const value_type& v) noexcept(NO_EXCEPT) { std::ranges::fill(*this, v); return *this; } inline auto& swap(const size_type i, const size_type j) noexcept(NO_EXCEPT) { std::swap(this->operator[](i), this->operator[](j)); return *this; } inline auto& sort() noexcept(NO_EXCEPT) { std::ranges::sort(*this); return *this; } template<class F> inline auto& sort(F&& f) noexcept(NO_EXCEPT) { std::ranges::sort(*this, std::forward<F>(f)); return *this; } inline auto& stable_sort() noexcept(NO_EXCEPT) { std::ranges::stable_sort(*this); return *this; } template<class F> inline auto& stable_sort(F&& f) noexcept(NO_EXCEPT) { std::ranges::stable_sort(*this, std::forward<F>(f)); return *this; } inline auto& reverse() noexcept(NO_EXCEPT) { std::ranges::reverse(*this); return *this; } inline auto count(const value_type& v) const noexcept(NO_EXCEPT) { return std::ranges::count(*this, v); } template<class F> inline auto count_if(F&& f) const noexcept(NO_EXCEPT) { return std::ranges::count_if(*this, std::forward<F>(f)); } inline auto& resize(const size_type k) noexcept(NO_EXCEPT) { this->Base::resize(k); return *this; } inline auto& resize(const size_type k, const value_type v) noexcept(NO_EXCEPT) { this->Base::resize(k, v); return *this; } template<class F> inline auto& shuffle(F&& f) noexcept(NO_EXCEPT) { std::ranges::shuffle(*this, std::forward<F>(f)); return *this; } inline auto& unique() noexcept(NO_EXCEPT) { const auto rest = std::ranges::unique(*this); this->erase(ALL(rest)); return *this; } template<class T> inline auto binary_search(const T& v) noexcept(NO_EXCEPT) { return std::ranges::binary_search(*this, v); } template<class T> inline auto lower_bound(const T& v) noexcept(NO_EXCEPT) { return std::ranges::lower_bound(*this, v); } template<class T> inline auto upper_bound(const T& v) noexcept(NO_EXCEPT) { return std::ranges::upper_bound(*this, v); } inline auto join(const char* sep = "") noexcept(NO_EXCEPT) { return uni::join(*this, sep); } inline auto sum() const noexcept(NO_EXCEPT) { return uni::sum(*this); } inline auto max() const noexcept(NO_EXCEPT) { return std::ranges::max(*this->_base()); } inline auto min() const noexcept(NO_EXCEPT) { return std::ranges::min(*this); } inline auto begin() noexcept(NO_EXCEPT) { return std::ranges::begin(*this->_base()); } inline auto begin() const noexcept(NO_EXCEPT) { return std::ranges::begin(*this->_base()); } inline auto end() noexcept(NO_EXCEPT) { return std::ranges::end(*this->_base()); } inline auto end() const noexcept(NO_EXCEPT) { return std::ranges::end(*this->_base()); } UNI_ADVANCED_CONTAINER_OPERATOR(+=, +, internal::weakly_addition_assignable) UNI_ADVANCED_CONTAINER_OPERATOR(-=, -, internal::weakly_subtraction_assignable) UNI_ADVANCED_CONTAINER_OPERATOR(*=, *, internal::weakly_multipliation_assignalbe) UNI_ADVANCED_CONTAINER_OPERATOR(/=, /, internal::weakly_division_assignable) UNI_ADVANCED_CONTAINER_OPERATOR(%=, %, internal::weakly_remainder_assignable) UNI_ADVANCED_CONTAINER_OPERATOR(&=, &, internal::weakly_bitand_assignable) UNI_ADVANCED_CONTAINER_OPERATOR(|=, |, internal::weakly_bitor_assignable) UNI_ADVANCED_CONTAINER_OPERATOR(^=, ^, internal::weakly_bitxor_assignable) }; } // namespace internal } // namespace uni #undef UNI_ADVANCED_CONTAINER_OPERATOR #line 8 "adaptor/string.hpp" namespace uni { using string = internal::advanced_container<std::string>; } // namespace uni namespace std { template<> struct hash<uni::string> { inline auto operator()(const uni::string& key) const noexcept(NO_EXCEPT) { return std::hash<std::string>{}(static_cast<std::string>(key)); } }; } #line 2 "adaptor/vector.hpp" #line 6 "adaptor/vector.hpp" #line 9 "adaptor/vector.hpp" namespace uni { template<class... Args> using vector = internal::advanced_container<std::vector<Args...>>; } // namespace uni #line 21 "numeric/internal/number_base.hpp" namespace uni { template<std::size_t B, class T> uni::string to_base_n_string(T v) noexcept(NO_EXCEPT) { constexpr std::string_view CHARS = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; static_assert(0 < B and B <= std::ranges::size(CHARS)); assert(0 <= v); uni::string res; while(v > 0) { res += CHARS[v%B]; v /= B; } std::reverse(ALL(res)); return res; } template<class T> uni::string to_base_n_string(T v, const uni::internal::size_t b) noexcept(NO_EXCEPT) { constexpr std::string_view CHARS = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; assert(1 < b && b <= std::ranges::ssize(CHARS)); assert(0 <= v); if(v == 0) return "0"; uni::string res; while(v > 0) { res += CHARS[v % b]; v /= b; } std::reverse(ALL(res)); return res; } template<class T> uni::vector<T> to_base_n_vector(T v, const uni::internal::size_t b) noexcept(NO_EXCEPT) { assert(1 < b); assert(0 <= v); uni::vector<T> res; while(v > 0) { res.push_back(v%b); v /= b; } return res; } template<std::bidirectional_iterator I, class T = typename std::iterator_traits<I>::value_type> T from_base_n_sequence(I begin, I end, const uni::internal::size_t b) noexcept(NO_EXCEPT) { assert(1 < b); if(begin == end) return 0; T res = 0; for(auto itr=end; itr-- != begin; ) { res *= b; res += *itr; } return res; } template<class T, std::forward_iterator I> T from_base_n_string(I begin, I end, const uni::internal::size_t b) noexcept(NO_EXCEPT) { assert(1 < b); if(begin == end) return 0; T sgn = 1; if(*begin == '-') { sgn = -1; ++begin; } T res = 0; for(auto itr=begin; itr != end; ++itr) { res *= b; if('0' <= *itr && *itr <= '9') { res += *itr - '0'; } else if('a' <= *itr && *itr <= 'z') { res += *itr - 'a' + 10; } else if('A' <= *itr && *itr <= 'Z'){ res += *itr - 'A' + 10; } else { assert(false); } } return res * sgn; } template<std::ranges::bidirectional_range R, class T = std::ranges::range_value_t<R>> requires std::ranges::common_range<R> T from_base_n_sequence(R range, const uni::internal::size_t b) noexcept(NO_EXCEPT) { return from_base_n_sequence(std::ranges::begin(range), std::ranges::end(range), b); } template<class T, std::ranges::bidirectional_range R> requires std::ranges::common_range<R> T from_base_n_string(R range, const uni::internal::size_t b) noexcept(NO_EXCEPT) { return from_base_n_string<T>(std::ranges::begin(range), std::ranges::end(range), b); } } // namespace uni #line 29 "numeric/arithmetic.hpp" #line 2 "iterable/operation.hpp" #line 6 "iterable/operation.hpp" #include <initializer_list> #line 9 "iterable/operation.hpp" #include <valarray> #line 17 "iterable/operation.hpp" #line 21 "iterable/operation.hpp" #line 2 "internal/exception.hpp" namespace uni { namespace internal { template<class... T> inline constexpr bool EXCEPTION_ON_TYPE = false; template<auto T> inline constexpr bool EXCEPTION_ON_VALUE = false; } // namespace internal } // namespace uni #line 2 "internal/ranges.hpp" #line 7 "internal/ranges.hpp" #line 11 "internal/ranges.hpp" namespace uni { namespace internal { template<class Range> concept resizable_range = std::ranges::range<Range> && requires (Range& r) { r.resize(0); }; template<class range> concept simple_view = std::ranges::view<range> && std::ranges::range<const range> && std::same_as<std::ranges::iterator_t<range>, std::ranges::iterator_t<const range>> && std::same_as<std::ranges::sentinel_t<range>, std::ranges::sentinel_t<const range>>; template<class... Ranges> concept zip_is_common = (sizeof...(Ranges) == 1 && (std::ranges::common_range<Ranges> && ...)) || (!(std::ranges::bidirectional_range<Ranges> && ...) && (std::ranges::common_range<Ranges> && ...)) || ((std::ranges::random_access_range<Ranges> && ...) && (std::ranges::sized_range<Ranges> && ...)); template<bool Const, class... Views> concept all_contiguous = (std::ranges::contiguous_range<maybe_const_t<Const, Views>> && ...); template<bool Const, class... Views> concept all_random_access = (std::ranges::random_access_range<maybe_const_t<Const, Views>> && ...); template<bool Const, class... Views> concept all_bidirectional = (std::ranges::bidirectional_range<maybe_const_t<Const, Views>> && ...); template<bool Const, class... Views> concept all_forward = (std::ranges::forward_range<maybe_const_t<Const, Views>> && ...); template<bool Const, class... Views> struct zip_view_iterator_category {}; template<bool Const, class... Views> requires all_forward<Const, Views...> struct zip_view_iterator_category<Const, Views...> { using iterator_category = std::input_iterator_tag; }; template<bool Const, class... Views> static auto _most_primitive_iterator_concept() noexcept(NO_EXCEPT) { if constexpr(all_random_access<Const, Views...>) return std::random_access_iterator_tag{}; else if constexpr(all_bidirectional<Const, Views...>) return std::bidirectional_iterator_tag{}; else if constexpr(all_forward<Const, Views...>) return std::forward_iterator_tag{}; else return std::input_iterator_tag{}; } template<bool Const, class... Views> using most_primitive_iterator_concept = decltype(_most_primitive_iterator_concept<Const, Views...>()); template<class Range, bool Const> using range_iterator_category = typename std::iterator_traits< std::ranges::iterator_t<maybe_const_t<Const, Range>> >::iterator_category; template<class Range> static constexpr auto _iterator_concept() noexcept(NO_EXCEPT) { if constexpr(std::ranges::random_access_range<Range>) return std::random_access_iterator_tag{}; else if constexpr(std::ranges::bidirectional_range<Range>) return std::bidirectional_iterator_tag{}; else if constexpr(std::ranges::forward_range<Range>) return std::forward_iterator_tag{}; else return std::input_iterator_tag{}; } template<class Range> using iterator_concept = decltype(_iterator_concept<Range>()); template<std::ranges::range Range> struct cached_position { constexpr bool has_value() const { return false; } constexpr std::ranges::iterator_t<Range> get(const Range&) const { __builtin_unreachable(); } constexpr void set(const Range &, const std::ranges::iterator_t<Range> &) const {} }; template<std::ranges::forward_range Range> struct cached_position<Range> : protected std::optional<std::ranges::iterator_t<Range>> { using std::optional<std::ranges::iterator_t<Range>>::optioanl; using std::optional<std::ranges::iterator_t<Range>>::has_value; constexpr std::ranges::iterator_t<Range> get(const Range&) const { assert(this->has_value()); return **this; } constexpr void set(const Range&, const std::ranges::iterator_t<Range>& itr) { assert(!this->has_value()); this->emplace(*itr); } }; template<std::ranges::random_access_range Range> requires(sizeof(std::ranges::range_difference_t<Range>) <= sizeof(std::ranges::iterator_t<Range>)) struct cached_position<Range> { private: std::ranges::range_difference_t<Range> _offset = -1; public: cached_position() = default; constexpr cached_position(const cached_position &) = default; constexpr cached_position(cached_position &&other) noexcept { *this = std::move(other); } constexpr cached_position &operator=(const cached_position &) = default; constexpr cached_position &operator=(cached_position &&other) noexcept { // Propagate the cached offset, but invalidate the source. this->_offset = other._offset; other._offset = -1; return *this; } constexpr bool has_value() const { return this->_offset >= 0; } constexpr std::ranges::iterator_t<Range> get(Range& range) const { assert(this->has_value()); return std::ranges::begin(range) + this->_offset; } constexpr void set(Range &range, const std::ranges::iterator_t<Range> &itr) { assert(!this->has_value()); this->_offset = itr - std::ranges::begin(range); } }; template<typename T, int Disc> struct absent { }; template<bool PRESENT, class T, int Disc = 0> using maybe_present_t = std::conditional_t<PRESENT, T, absent<T, Disc>>; } // namespace internal namespace views::adaptor { template<class Adaptor, class... Args> concept adaptor_invocable = requires { std::declval<Adaptor>()(std::declval<Args>()...); }; template<class Adaptor, class... Args> concept adaptor_partial_app_viable = (Adaptor::arity > 1) && (sizeof...(Args) == Adaptor::arity - 1) && (std::constructible_from<std::remove_cvref_t<Args>, Args> && ...); template<class Adaptor, class... Args> struct partial; template<class, class> struct pipe; template<class Derived> struct range_adaptor_closure {}; template<class T, class U> requires(!std::same_as<T, range_adaptor_closure<U>>) void is_range_adaptor_closure_fn(const T &, const range_adaptor_closure<U> &); template<class T> concept is_range_adaptor_closure = requires(T t) { adaptor::is_range_adaptor_closure_fn(t, t); }; template<class Self, class Range> requires is_range_adaptor_closure<Self> && adaptor_invocable<Self, Range> constexpr auto operator|(Range&& range, Self&& self) { return std::forward<Self>(self)(std::forward<Range>(range)); } template<class Lhs, class Rhs> requires is_range_adaptor_closure<Lhs> && is_range_adaptor_closure<Rhs> constexpr auto operator|(Lhs&& lhs, Rhs&& rhs) { return pipe<std::remove_cvref_t<Lhs>, std::remove_cvref_t<Rhs>>{ std::forward<Lhs>(lhs), std::forward<Rhs>(rhs)}; } template<class Derived> struct range_adaptor { template<class... Args> requires adaptor_partial_app_viable<Derived, Args...> inline constexpr auto operator()(Args&& ..._args) const noexcept(NO_EXCEPT) { return partial<Derived, std::remove_cvref_t<Args>...>{ std::forward<Args>(_args)... }; } }; template<class Adaptor> concept closure_has_simple_call_op = Adaptor::has_simple_call_op; template<class Adaptor, class... Args> concept adaptor_has_simple_extra_args = Adaptor::has_simple_extra_args || Adaptor::template has_simple_extra_args<Args...>; template<class Adaptor, class... Args> struct partial : range_adaptor_closure<partial<Adaptor, Args...>> { std::tuple<Args...> args; constexpr partial(Args... _args) noexcept(NO_EXCEPT) : args(std::move(_args)...) {} template<class Range> requires adaptor_invocable<Adaptor, Range, const Args &...> inline constexpr auto operator()(Range&& range) const & noexcept(NO_EXCEPT) { const auto forwarder = [&range](const auto &..._args) constexpr noexcept(NO_EXCEPT) { return Adaptor{}(std::forward<Range>(range), _args...); }; return std::apply(forwarder, this->args); } template<class Range> requires adaptor_invocable<Adaptor, Range, Args...> inline constexpr auto operator()(Range&& range) && noexcept(NO_EXCEPT) { const auto forwarder = [&range](auto &..._args) constexpr noexcept(NO_EXCEPT) { return Adaptor{}(std::forward<Range>(range), std::move(_args)...); }; return std::apply(forwarder, this->args); } template<class Range> inline constexpr auto operator()(Range&& range) const && = delete; }; template<class Adaptor, class Arg> struct partial<Adaptor, Arg> : range_adaptor_closure<partial<Adaptor, Arg>> { Arg arg; constexpr partial(Arg _arg) noexcept(NO_EXCEPT) : arg(std::move(_arg)) {} template<class Range> requires adaptor_invocable<Adaptor, Range, const Arg &> inline constexpr auto operator()(Range&& range) const & noexcept(NO_EXCEPT) { return Adaptor{}(std::forward<Range>(range), this->arg); } template<class Range> requires adaptor_invocable<Adaptor, Range, Arg> inline constexpr auto operator()(Range&& range) && noexcept(NO_EXCEPT) { return Adaptor{}(std::forward<Range>(range), std::move(this->arg)); } template<class Range> inline constexpr auto operator()(Range&& range) const && = delete; }; template<class Adaptor, class... Args> requires adaptor_has_simple_extra_args<Adaptor, Args...> && (std::is_trivially_copyable_v<Args> && ...) struct partial<Adaptor, Args...> : range_adaptor_closure<partial<Adaptor, Args...>> { std::tuple<Args...> args; constexpr partial(Args... _args) noexcept(NO_EXCEPT) : args(std::move(_args)...) {} template<class Range> requires adaptor_invocable<Adaptor, Range, const Args &...> inline constexpr auto operator()(Range&& range) const noexcept(NO_EXCEPT) { const auto forwarder = [&range](const auto &..._args) constexpr noexcept(NO_EXCEPT) { return Adaptor{}(std::forward<Range>(range), _args...); }; return std::apply(forwarder, this->args); } static constexpr bool has_simple_call_op = true; }; template<class Adaptor, class Arg> requires adaptor_has_simple_extra_args<Adaptor, Arg> && std::is_trivially_copyable_v<Arg> struct partial<Adaptor, Arg> : range_adaptor_closure<partial<Adaptor, Arg>> { Arg arg; constexpr partial(Arg _arg) noexcept(NO_EXCEPT) : arg(std::move(_arg)) {} template<class Range> requires adaptor_invocable<Adaptor, Range, const Arg &> inline constexpr auto operator()(Range&& range) const noexcept(NO_EXCEPT) { return Adaptor{}(std::forward<Range>(range), this->arg); } static constexpr bool has_simple_call_op = true; }; template<class Lhs, class Rhs, class Range> concept pipe_invocable = requires { std::declval<Rhs>()(std::declval<Lhs>()(std::declval<Range>())); }; template<class Lhs, class Rhs> struct pipe : range_adaptor_closure<pipe<Lhs, Rhs>> { [[no_unique_address]] Lhs lhs; [[no_unique_address]] Rhs rhs; constexpr pipe(Lhs _lhs, Rhs _rhs) noexcept(NO_EXCEPT) : lhs(std::move(_lhs)), rhs(std::move(_rhs)) {} template<class Range> requires pipe_invocable<const Lhs &, const Rhs &, Range> inline constexpr auto operator()(Range&& range) const & noexcept(NO_EXCEPT) { return rhs(lhs(std::forward<Range>(range))); } template<class Range> requires pipe_invocable<Lhs, Rhs, Range> inline constexpr auto operator()(Range&& range) && noexcept(NO_EXCEPT) { return std::move(rhs)(std::move(lhs)(std::forward<Range>(range))); } template<class Range> inline constexpr auto operator()(Range&& range) const && = delete; }; template<class Lhs, class Rhs> requires closure_has_simple_call_op<Lhs> && closure_has_simple_call_op<Rhs> struct pipe<Lhs, Rhs> : range_adaptor_closure<pipe<Lhs, Rhs>> { [[no_unique_address]] Lhs lhs; [[no_unique_address]] Rhs rhs; constexpr pipe(Lhs _lhs, Rhs _rhs) noexcept(NO_EXCEPT) : lhs(std::move(_lhs)), rhs(std::move(_rhs)) {} template<class Range> requires pipe_invocable<const Lhs &, const Rhs &, Range> inline constexpr auto operator()(Range&& range) const noexcept(NO_EXCEPT) { return rhs(lhs(std::forward<Range>(range))); } static constexpr bool has_simple_call_op = true; }; } // namespace views::adaptor } // namespace uni #line 28 "iterable/operation.hpp" #line 2 "iterable/z_array.hpp" #line 6 "iterable/z_array.hpp" #line 9 "iterable/z_array.hpp" #line 2 "adaptor/valarray.hpp" #line 11 "adaptor/valarray.hpp" #line 14 "adaptor/valarray.hpp" #line 16 "adaptor/valarray.hpp" namespace uni { template<class T> struct valarray : internal::advanced_container<std::valarray<T>> { private: using base = internal::advanced_container<std::valarray<T>>; public: using size_type = internal::size_t; using iterator = T*; using const_iterator = const T*; protected: inline bool _validate_index_in_right_open([[maybe_unused]] const size_type p) const noexcept(NO_EXCEPT) { return 0 <= p and p < this->size(); } inline bool _validate_index_in_closed([[maybe_unused]] const size_type p) const noexcept(NO_EXCEPT) { return 0 <= p and p <= this->size(); } inline bool _validate_rigth_open_interval([[maybe_unused]] const size_type l, [[maybe_unused]] const size_type r) const noexcept(NO_EXCEPT) { return 0 <= l and l <= r and r <= this->size(); } inline size_type _positivize_index(const size_type p) const noexcept(NO_EXCEPT) { return p < 0 ? this->size() + p : p; } public: valarray() noexcept(NO_EXCEPT) {} explicit valarray(const std::size_t length, const T& val = T{}) noexcept(NO_EXCEPT) : base(val, length) {} template<std::input_iterator I, std::sentinel_for<I> S> valarray(I first, S last) noexcept(NO_EXCEPT) : base(std::ranges::distance(first, last)) { std::ranges::copy(first, last, std::ranges::begin(*this)); } template<class U> valarray(const U* pointer, const size_t n) noexcept(NO_EXCEPT) : base(pointer, n) {}; valarray(const std::slice_array<T>& arr) noexcept(NO_EXCEPT) : base(arr) {}; valarray(const std::gslice_array<T>& arr) noexcept(NO_EXCEPT) : base(arr) {}; valarray(const std::mask_array<T>& arr) noexcept(NO_EXCEPT) : base(arr) {}; valarray(const std::indirect_array<T>& arr) noexcept(NO_EXCEPT) : base(arr) {}; valarray(const std::initializer_list<T>& init) noexcept(NO_EXCEPT) : base(init) {} valarray(const internal::advanced_container<std::valarray<T>>& arr) noexcept(NO_EXCEPT) : base(arr) {} #ifdef __GNUC__ template<class Dom> valarray(const std::_Expr<Dom,T>& expr) noexcept(NO_EXCEPT) : base(expr) {} #endif inline auto size() const noexcept(NO_EXCEPT) { return static_cast<size_type>(this->base::size()); } inline void reserve(const size_type) noexcept(NO_EXCEPT) { /* do nothing */ } template<std::input_iterator I, std::sentinel_for<I> S> inline void assign(I first, S last) noexcept(NO_EXCEPT) { this->resize(std::ranges::distance(first, last)); std::ranges::copy(first, last, std::ranges::begin(*this)); } inline void assign(const std::size_t length, const T& val = T{}) noexcept(NO_EXCEPT) { this->base::resize(length, val); } inline void resize(const std::size_t length, const T& val = T{}) noexcept(NO_EXCEPT) { base temp = *this; this->assign(length, val); std::move(std::begin(temp), std::min(std::end(temp), std::next(std::begin(temp), length)), std::begin(*this)); } inline const T& operator[](size_type pos) const noexcept(NO_EXCEPT) { pos = this->_positivize_index(pos), assert(this->_validate_index_in_right_open(pos)); return this->base::operator[](pos); } inline T& operator[](size_type pos) noexcept(NO_EXCEPT) { pos = this->_positivize_index(pos), assert(this->_validate_index_in_right_open(pos)); return this->base::operator[](pos); } inline const T& back() const noexcept(NO_EXCEPT) { return *std::prev(this->end()); } inline T& back() noexcept(NO_EXCEPT) { return *std::prev(this->end()); } inline const T& front() const noexcept(NO_EXCEPT) { return *this->begin(); } inline T& front() noexcept(NO_EXCEPT) { return *this->begin(); } inline auto rbegin() noexcept(NO_EXCEPT) { return std::make_reverse_iterator(std::ranges::end(*this)); } inline auto rend() noexcept(NO_EXCEPT) { return std::make_reverse_iterator(std::ranges::begin(*this)); } inline auto rbegin() const noexcept(NO_EXCEPT) { return std::make_reverse_iterator(std::ranges::end(*this)); } inline auto rend() const noexcept(NO_EXCEPT) { return std::make_reverse_iterator(std::ranges::begin(*this)); } }; } // namespace uni #line 11 "iterable/z_array.hpp" namespace uni { // Thanks to: atcoder::z_algorithm template<class SizeType = internal::size_t, class Container = valarray<SizeType>> struct z_array : Container { using size_type = SizeType; template<std::input_iterator I, std::sentinel_for<I> S> z_array(I first, S last) : Container(std::ranges::distance(first, last), {}) { const size_type n = static_cast<size_type>(std::ranges::distance(first, last)); if(n == 0) return; for(size_type i = 1, j = 0; i < n; ++i) { size_type& k = this->operator[](i); k = (j + this->operator[](j) <= i) ? 0 : std::ranges::min(j + this->operator[](j) - i, this->operator[](i - j)); while(i + k < n and first[k] == first[i + k]) ++k; if(j + this->operator[](j) < i + this->operator[](i)) j = i; } *this->begin() = n; } template<std::ranges::input_range R> explicit z_array(R&& range) : z_array(ALL(range)) {} }; } // namespace uni #line 31 "iterable/operation.hpp" #line 2 "view/concat.hpp" #line 11 "view/concat.hpp" #line 18 "view/concat.hpp" namespace uni { namespace internal { namespace view_impl { template<std::ranges::input_range V0, std::ranges::input_range V1> requires std::ranges::view<V0> && std::ranges::view<V1> struct concat_view : std::ranges::view_interface<concat_view<V0, V1>> { private: V0 _b0; V1 _b1; template<bool Const> using B0 = internal::maybe_const_t<Const, V0>; template<bool Const> using B1 = internal::maybe_const_t<Const, V1>; template<bool Const> struct iterator_tag {}; template<bool Const> requires std::ranges::forward_range<B0<Const>> && std::ranges::forward_range<B1<Const>> struct iterator_tag<Const> { public: using iterator_category = uni::internal::most_primitive_iterator_tag< typename std::iterator_traits<std::ranges::iterator_t<B0<Const>>>::iterator_category, typename std::iterator_traits<std::ranges::iterator_t<B1<Const>>>::iterator_category >; }; public: template<bool> class iterator; constexpr explicit concat_view(V0 v0, V1 v1) noexcept(NO_EXCEPT) : _b0(std::move(v0)), _b1(std::move(v1)) {} inline constexpr std::pair<V0, V1> base() const & noexcept(NO_EXCEPT) requires std::copy_constructible<V0> && std::copy_constructible<V0> { return { this->_b0, this->_b1 }; } inline constexpr std::pair<V0,V1> base() && noexcept(NO_EXCEPT) { return { std::move(this->_b0), std::move(this->_b1) }; } inline constexpr auto begin() noexcept(NO_EXCEPT) requires (!internal::simple_view<V0> && !internal::simple_view<V1>) { return iterator<false>(this, std::ranges::begin(this->_b0), std::ranges::begin(this->_b1), 0); } inline constexpr auto begin() const noexcept(NO_EXCEPT) requires std::ranges::range<const V0> && std::ranges::range<const V1> { return iterator<true>(this, std::ranges::begin(this->_b0), std::ranges::begin(this->_b1), 0); } inline constexpr auto end() noexcept(NO_EXCEPT) requires (!internal::simple_view<V0> && !internal::simple_view<V1>) { if constexpr(std::ranges::common_range<V0> && std::ranges::common_range<V1>) { return iterator<false>(this, std::ranges::end(this->_b0), std::ranges::end(this->_b1), 1); } else { return std::default_sentinel; } } inline constexpr auto end() const noexcept(NO_EXCEPT) requires std::ranges::range<const V0> && std::ranges::range<const V1> { if constexpr(std::ranges::common_range<const V0> && std::ranges::common_range<const V1>) { return iterator<true>(this, std::ranges::end(this->_b0), std::ranges::end(this->_b1), 1); } else { return std::default_sentinel; } } inline constexpr auto size() noexcept(NO_EXCEPT) requires std::ranges::sized_range<V0> && std::ranges::sized_range<V1> { return static_cast<std::size_t>(std::ranges::distance(this->_b0) + std::ranges::distance(this->_b1)); } inline constexpr auto size() const noexcept(NO_EXCEPT) requires std::ranges::sized_range<const V0> && std::ranges::sized_range<const V1> { return static_cast<std::size_t>(std::ranges::distance(this->_b0) + std::ranges::distance(this->_b1)); } }; template<std::ranges::input_range V0, std::ranges::input_range V1> requires std::ranges::view<V0> && std::ranges::view<V1> template<bool Const> struct concat_view<V0, V1>::iterator : iterator_tag<Const> { private: using Parent = internal::maybe_const_t<Const, concat_view>; using B0 = concat_view::B0<Const>; using B1 = concat_view::B1<Const>; std::ranges::iterator_t<B0> _c0 = std::ranges::iterator_t<B0>(); std::ranges::iterator_t<B0> _b0 = std::ranges::iterator_t<B0>(); std::ranges::sentinel_t<B0> _e0 = std::ranges::sentinel_t<B0>(); std::ranges::iterator_t<B1> _c1 = std::ranges::iterator_t<B1>(); std::ranges::iterator_t<B1> _b1 = std::ranges::iterator_t<B1>(); std::ranges::sentinel_t<B1> _e1 = std::ranges::sentinel_t<B1>(); int _block = 0; constexpr iterator(Parent *const parent, const std::ranges::iterator_t<B0> c0, const std::ranges::iterator_t<B1> c1, const int block) noexcept(NO_EXCEPT) : _c0(std::move(c0)), _b0(std::ranges::begin(parent->_b0)), _e0(std::ranges::end(parent->_b0)), _c1(std::move(c1)), _b1(std::ranges::begin(parent->_b1)), _e1(std::ranges::end(parent->_b1)), _block(block || std::ranges::empty(parent->_b0)) {} friend concat_view; public: using difference_type = std::common_type_t<std::ranges::range_difference_t<B0>, std::ranges::range_difference_t<B1>>; using value_type = std::common_type_t<std::ranges::range_value_t<B0>, std::ranges::range_value_t<B1>>; using reference_type = std::common_reference_t<std::ranges::range_reference_t<B0>, std::ranges::range_reference_t<B1>>; using iterator_concept = most_primitive_iterator_concept<Const, V0, V1>; iterator() noexcept(NO_EXCEPT) requires std::default_initializable<std::ranges::iterator_t<B0>> && std::default_initializable<std::ranges::iterator_t<B0>> = default; constexpr iterator(iterator<!Const> itr) noexcept(NO_EXCEPT) requires Const && std::convertible_to<std::ranges::iterator_t<V0>, std::ranges::iterator_t<B0>> && std::convertible_to<std::ranges::sentinel_t<V0>, std::ranges::sentinel_t<B0>> && std::convertible_to<std::ranges::iterator_t<V1>, std::ranges::iterator_t<B1>> && std::convertible_to<std::ranges::sentinel_t<V1>, std::ranges::sentinel_t<B1>> : _c0(std::move(itr._c0)), _b0(std::move(itr._b0)), _e0(std::move(itr._e0)), _c1(std::move(itr._c0)), _b1(std::move(itr._b0)), _e1(std::move(itr._e1)), _block(itr._block) {} inline constexpr std::variant<std::ranges::iterator_t<B0>, std::ranges::iterator_t<B1>> base() && noexcept(NO_EXCEPT) { if(this->_block == 0) return std::move(this->_c0); else return std::move(this->_C1); } inline constexpr std::variant< std::reference_wrapper<const std::ranges::iterator_t<B0>>, std::reference_wrapper<const std::ranges::iterator_t<B1>> > base() const & noexcept { if(this->_block == 0) return std::move(this->_c0); else return std::move(this->_c1); } inline constexpr reference_type operator*() const noexcept(NO_EXCEPT) { if(this->_block == 0) return *this->_c0; else return *this->_c1; } inline constexpr iterator& operator++() noexcept(NO_EXCEPT) { assert(this->_c0 != this->_e0 or this->_c1 != this->_e1); if(this->_block == 0) { if(++this->_c0 == this->_e0) { this->_block = 1; assert(this->_c1 == this->_b1); } } else { ++this->_c1; } return *this; } inline constexpr void operator++(int) noexcept(NO_EXCEPT) { ++*this; } inline constexpr iterator operator++(int) noexcept(NO_EXCEPT) requires std::ranges::forward_range<B0> && std::ranges::forward_range<B1> { const auto res = *this; ++*this; return res; } inline constexpr iterator& operator--() noexcept(NO_EXCEPT) requires std::ranges::bidirectional_range<B0> && std::ranges::bidirectional_range<B1> && std::bidirectional_iterator<std::ranges::sentinel_t<B0>> { if(this->_block == 1) { if(this->_c1 == this->_b1) { this->_block = 0; this->_c0 = std::ranges::prev(this->_e0); } else { --this->_c1; } } else { --this->_c0; } return *this; } inline constexpr iterator operator--(int) noexcept(NO_EXCEPT) requires std::ranges::bidirectional_range<B0> && std::ranges::bidirectional_range<B1> { const auto res = *this; --*this; return res; } inline constexpr iterator& operator+=(const difference_type diff) noexcept(NO_EXCEPT) requires std::ranges::random_access_range<B0> && std::ranges::random_access_range<B1> { if(diff > 0) { if(this->_block == 0) { const auto missing = std::ranges::advance(this->_c0, diff, this->_e0); if(this->_c0 == this->_e0) { this->_block = 1; assert(this->_c1 == this->_b1); std::ranges::advance(this->_c1, missing, this->_e1); } } else { std::ranges::advance(this->_c1, diff, this->_e1); } } if(diff < 0) { if(this->_block == 1) { const auto missing = std::ranges::advance(this->_c1, diff, this->_b1); if(missing < 0) { this->_block = 0; assert(this->_c0 == this->_e0); std::ranges::advance(this->_c0, missing, this->_b0); } } else { std::ranges::advance(this->_c0, diff, this->_b0); } } return *this; } inline constexpr iterator& operator-=(const difference_type diff) noexcept(NO_EXCEPT) requires std::ranges::random_access_range<B0> && std::ranges::random_access_range<B1> { return *this += -diff; } inline constexpr decltype(auto) operator[](const difference_type diff) const noexcept(NO_EXCEPT) requires std::ranges::random_access_range<B0> && std::ranges::random_access_range<B1> { return *(*this + diff); } friend inline constexpr bool operator==(const iterator& lhs, std::default_sentinel_t) noexcept(NO_EXCEPT) { if(lhs._block == 0) return false; if(lhs._block == 1) return lhs._c1 == lhs._e1; assert(false); } friend inline constexpr bool operator==(const iterator& lhs, const iterator& rhs) noexcept(NO_EXCEPT) requires std::equality_comparable<std::ranges::iterator_t<B0>> && std::equality_comparable<std::ranges::iterator_t<B1>> { if(lhs._block != rhs._block) return false; return lhs._block == 0 ? lhs._c0 == rhs._c0 : lhs._c1 == rhs._c1; } friend inline constexpr auto operator<=>(const iterator& lhs, const iterator& rhs) noexcept(NO_EXCEPT) requires std::ranges::random_access_range<B0> && std::ranges::random_access_range<B1> { if(lhs._block != rhs._block) return lhs._block <=> rhs._block; return lhs._block == 0 ? lhs._c0 <=> rhs._c0 : lhs._c1 <=> rhs._c1; } friend inline constexpr iterator operator+(const iterator& itr, const difference_type diff) noexcept(NO_EXCEPT) requires std::ranges::random_access_range<B0> && std::ranges::random_access_range<B1> { auto res = itr; res += diff; return res; } friend inline constexpr iterator operator+(const difference_type diff, const iterator& itr) noexcept(NO_EXCEPT) requires std::ranges::random_access_range<B0> && std::ranges::random_access_range<B1> { return itr + diff; } friend inline constexpr iterator operator-(const iterator& itr, const difference_type diff) noexcept(NO_EXCEPT) requires std::ranges::random_access_range<B0> && std::ranges::random_access_range<B1> { auto res = itr; res -= diff; return res; } friend inline constexpr const difference_type operator-(const iterator& lhs, const iterator& rhs) noexcept(NO_EXCEPT) requires std::sized_sentinel_for<std::ranges::iterator_t<B0>, std::ranges::iterator_t<B0>> && std::sized_sentinel_for<std::ranges::iterator_t<B1>, std::ranges::iterator_t<B1>> { if(lhs._block == rhs._block) { return lhs._block == 0 ? std::ranges::distance(rhs._c0, lhs._c0) : std::ranges::distance(rhs._c1, lhs._c1); } if(lhs._block > rhs._block) return std::ranges::distance(rhs._c0, rhs._e0) + std::ranges::distance(lhs._b1, lhs._c1); if(lhs._block < rhs._block) return -(rhs - lhs); assert(false); } friend inline constexpr const difference_type operator-(std::default_sentinel_t, const iterator& rhs) noexcept(NO_EXCEPT) requires std::sized_sentinel_for<std::ranges::sentinel_t<B0>, std::ranges::iterator_t<B0>> && std::sized_sentinel_for<std::ranges::sentinel_t<B1>, std::ranges::iterator_t<B1>> { if(rhs._block == 0) return std::ranges::distance(rhs._c0, rhs._e0) + std::ranges::distance(rhs._b1, rhs._e1); if(rhs._block == 1) return std::ranges::distance(rhs._c1, rhs._e1); assert(false); } friend inline constexpr const difference_type operator-(const iterator& lhs, std::default_sentinel_t rhs) noexcept(NO_EXCEPT) requires std::sized_sentinel_for<std::ranges::sentinel_t<B0>, std::ranges::iterator_t<B0>> && std::sized_sentinel_for<std::ranges::sentinel_t<B1>, std::ranges::iterator_t<B1>> { return -(rhs - lhs); } friend inline constexpr std::common_reference_t< std::ranges::range_rvalue_reference_t<B0>, std::ranges::range_rvalue_reference_t<B1> > iter_move(const iterator& itr) noexcept(NO_EXCEPT) { if(itr._block == 0) return std::ranges::iter_move(itr._c0); if(itr._block == 1) return std::ranges::iter_move(itr._c1); assert(false); } friend inline constexpr void iter_swap(const iterator& lhs, const iterator& rhs) noexcept(NO_EXCEPT) requires std::indirectly_swappable<std::ranges::iterator_t<B0>> && std::indirectly_swappable<std::ranges::iterator_t<B1>> && std::indirectly_swappable<std::ranges::iterator_t<B0>, std::ranges::iterator_t<B1>> { if(lhs._block == 0 && rhs._block == 0) std::ranges::iter_swap(lhs._c0, rhs._c0); if(lhs._block == 0 && rhs._block == 1) std::ranges::iter_swap(lhs._c0, rhs._c1); if(lhs._block == 1 && rhs._block == 0) std::ranges::iter_swap(lhs._c1, rhs._c0); if(lhs._block == 1 && rhs._block == 1) std::ranges::iter_swap(lhs._c1, rhs._c1); assert(false); } }; } // namespace view_impl } // namespace internal template<class...> struct concat_view; template<class T> struct concat_view<T> : std::views::all_t<T> { using std::views::all_t<T>::all_t; }; template<class T0, class T1> struct concat_view<T0, T1> : internal::view_impl::concat_view<std::views::all_t<T0>, std::views::all_t<T1>> { explicit concat_view(T0&& v0, T1&& v1) noexcept(NO_EXCEPT) : internal::view_impl::concat_view<std::views::all_t<T0>, std::views::all_t<T1>>(std::forward<T0>(v0), std::forward<T1>(v1)) {} }; template<class T0, class T1, class... Ts> struct concat_view<T0, T1, Ts...> : concat_view<concat_view<T0, T1>, Ts...> { explicit concat_view(T0&& v0, T1&& v1, Ts&&... vs) noexcept(NO_EXCEPT) : concat_view<concat_view<T0, T1>, Ts...>( concat_view<T0, T1>(std::forward<T0>(v0), std::forward<T1>(v1)), std::forward<Ts>(vs)... ) {} }; namespace views { namespace internal { template<class... Ts> concept can_concat_view = requires { concat_view<Ts...>(std::declval<Ts>()...); }; } // namespace internal struct Concat { template<class... Ts> requires (sizeof...(Ts) == 0 || internal::can_concat_view<Ts...>) inline constexpr auto operator() [[nodiscard]] (Ts&&... vs) const { if constexpr(sizeof...(Ts) == 0) return std::views::empty<std::nullptr_t>; else return concat_view<std::views::all_t<Ts>...>(std::forward<Ts>(vs)...); } }; inline constexpr Concat concat; } // namespace views } // namespace uni. namespace std::ranges { template<class... Views> inline constexpr bool enable_borrowed_range<uni::concat_view<Views...>> = (enable_borrowed_range<Views> && ...); } #line 2 "global/constants.hpp" #line 7 "global/constants.hpp" #include <cmath> #line 11 "global/constants.hpp" #line 14 "global/constants.hpp" #line 2 "numeric/limits.hpp" #line 6 "numeric/limits.hpp" #line 9 "numeric/limits.hpp" #line 11 "numeric/limits.hpp" namespace uni { template<class T> struct numeric_limits : std::numeric_limits<T> { static constexpr long double FLOAT_EPSILON = 1E-14; static constexpr T arithmetic_infinity() noexcept(NO_EXCEPT) { return std::numeric_limits<T>::max() / 2 - 1; } static constexpr T arithmetic_negative_infinity() noexcept(NO_EXCEPT) { return std::numeric_limits<T>::lowest() / 2 + 1; } static constexpr T arithmetic_epsilon() noexcept(NO_EXCEPT) { if constexpr(std::is_floating_point_v<T>) { return numeric_limits::FLOAT_EPSILON; } else { return 0; } } }; constexpr i32 INF32 = numeric_limits<i32>::arithmetic_infinity(); constexpr i64 INF64 = numeric_limits<i64>::arithmetic_infinity(); template<class T> constexpr T INF = numeric_limits<T>::arithmetic_infinity(); template<class T> constexpr T EPSILON = numeric_limits<T>::arithmetic_epsilon(); } // namespace uni #line 16 "global/constants.hpp" namespace uni { namespace internal { template<class T> consteval auto get_pi() { if constexpr(std::integral<T>) { return static_cast<T>(3); } else if constexpr(std::same_as<T, float>) { return M_PIf; } else if constexpr(std::same_as<T, double>) { return M_PI; } else if constexpr(std::same_as<T, ld>) { return M_PIl; } else { static_assert(EXCEPTION_ON_TYPE<T>); } } } // namespace internal template<class T = ld> constexpr auto PI = internal::get_pi<T>(); enum class comparison : std::uint8_t { equal_to, not_equal_to, equals = equal_to, eq = equal_to, under, over, or_under, or_over, less = under, more = over, less_than = under, more_than = over, not_less_than = or_over, not_more_than = or_under, leq = or_under, geq = or_over }; enum class interval_notation : std::uint8_t { right_open, left_open, open, closed, }; enum class replacement_policy : std::uint8_t { insert_sync, overwrite_sync, overwrite_async }; enum class rotation : std::int8_t { clockwise, counter_clockwise, anti_clockwise = counter_clockwise, }; enum class positional_relation : std::int8_t { clockwise, counter_clockwise, anti_clockwise = counter_clockwise, backward, forward, in, on, out, included = in, inscribed, intersecting, circumscribed, distant, }; enum class alignment : std::int8_t { left, center, right }; } // namespace uni #line 35 "iterable/operation.hpp" namespace uni { template<std::ranges::input_range R0, std::ranges::input_range R1> requires std::constructible_from< R0, std::common_type_t<std::ranges::range_size_t<R0>,std::ranges::range_size_t<R1>> > R0 concat(R0&& r0, R1&& r1) noexcept(NO_EXCEPT) { R0 res(std::ranges::size(r0) + std::ranges::size(r1)); std::ranges::copy(r0, std::ranges::begin(res)); std::ranges::copy(r1, std::ranges::next(std::ranges::begin(res), std::ranges::size(r0))); return res; } template<std::ranges::input_range R, std::ranges::input_range... Rs> R concat(R&& range, Rs&&... tails) noexcept(NO_EXCEPT) { return uni::concat(range, uni::concat(tails...)); } template<std::ranges::input_range R> requires requires(R r) { r.erase(std::ranges::unique(ALL(r)), std::ranges::end(r)); } inline auto unique(R range) noexcept(NO_EXCEPT) { std::ranges::sort(range); range.erase(std::ranges::unique(ALL(range)), std::ranges::end(range)); return range; } template< std::input_iterator I, std::sentinel_for<I> S, class T = std::iter_value_t<I> > T mex(I first, S last, const T& base = T()) noexcept(NO_EXCEPT) { std::vector<T> val(first, last); std::ranges::sort(val); { auto range = std::ranges::unique(val); val.erase(ALL(range)); } val.erase(val.begin(), std::ranges::lower_bound(val, base)); T i = 0; while(i < std::ranges::ssize(val) && val[i] == i + base) ++i; return T{i} + base; } template<std::ranges::input_range R> auto mex(R&& range, const std::ranges::range_value_t<R>& base = std::ranges::range_value_t<R>()) noexcept(NO_EXCEPT) { return mex(ALL(range), base); } template<class T> auto mex(const std::initializer_list<T> v, const T& base = T()) noexcept(NO_EXCEPT) { return mex(ALL(v), base); } template<std::input_iterator I, std::sentinel_for<I> S, class T> inline constexpr auto gcd(I first, S last) noexcept(NO_EXCEPT) { T res = T{0}; for(auto itr=first; itr!=last; ++itr) res = std::gcd(res, *itr); return res; } template<std::input_iterator I, std::sentinel_for<I> S, class T> inline constexpr auto lcm(I first, S last) noexcept(NO_EXCEPT) { T res = T{1}; for(auto itr=first; itr!=last; ++itr) res = std::lcm(res, *itr); return res; } template<std::ranges::input_range R, class T = std::ranges::range_value_t<R>> auto mex(R&& range, const T& base) noexcept(NO_EXCEPT) { return mex(ALL(range), base); } template<std::ranges::input_range R> auto gcd(R&& range) noexcept(NO_EXCEPT) { return gcd(ALL(range)); } template<std::ranges::input_range R> auto lcm(R&& range) noexcept(NO_EXCEPT) { return lcm(ALL(range)); } template<class R, std::input_iterator I, std::sentinel_for<I> S, class D> requires requires (R r, I itr) { r.emplace_back(itr, itr); } auto split(I first, S last, const D& delim = ' ') noexcept(NO_EXCEPT) { R res; for(auto itr=first, fnd=first; ; itr=std::ranges::next(fnd)) { fnd = std::find(itr, last, delim); res.emplace_back(itr, fnd); if(fnd == last) break; } return res; } template<class R, std::ranges::input_range V, class D> requires (!std::ranges::input_range<D>) auto split(V&& v, D&& d) noexcept(NO_EXCEPT) { return split<R>(ALL(v), d); } template<class R, std::ranges::input_range V, std::ranges::input_range Ds> auto split(V&& v, Ds&& ds) noexcept(NO_EXCEPT) { R res = { v }; ITR(d, ds) { R tmp; ITR(p, res) tmp = concat(tmp, split<R>(p, d)); res = std::move(tmp); } return res; } template<class R, std::ranges::input_range V, class T> auto split(V&& v, const std::initializer_list<T> ds) noexcept(NO_EXCEPT){ return split<R,V>(v, std::vector<T>(ALL(ds))); } template<std::ranges::sized_range Source, std::ranges::sized_range Qeury> auto find(Source&& source, Qeury&& query) noexcept(NO_EXCEPT) { z_array z_arr(views::concat(query, source)); const auto query_size = std::ranges::ssize(query); vector<std::ranges::iterator_t<Source>> res; { auto itr = std::ranges::begin(source); REP(i, query_size, std::ranges::size(z_arr)) { if(z_arr[i] >= query_size) res.push_back(itr); ++itr; } } return res; } template< replacement_policy POLICY, std::ranges::sized_range R, std::ranges::sized_range From, std::ranges::sized_range To > auto replaced(R&& source, From&& from, To&& to) noexcept(NO_EXCEPT) { std::remove_cvref_t<R> res; if constexpr(POLICY == replacement_policy::insert_sync) { const auto found = find(source, from); auto itr = std::ranges::begin(source); ITRR(fn, found) { std::ranges::copy(itr, fn, std::back_inserter(res)); std::ranges::copy(ALL(to), std::back_inserter(res)); itr = std::ranges::next(fn, std::ranges::size(from)); } std::ranges::copy(itr, std::ranges::end(source), std::back_inserter(res)); } else { res = source; res.resize(std::ranges::size(source) + std::ranges::size(to)); const auto found = find(res, from); auto prev = std::ranges::begin(res); ITRR(fn, found) { if constexpr(POLICY == replacement_policy::overwrite_sync) { if(prev <= fn) prev = std::ranges::copy(to, fn); } else { std::ranges::copy(to, fn); } } res.resize(std::ranges::size(source)); } return res; } template< std::ranges::sized_range R, std::ranges::sized_range From, std::ranges::sized_range To > inline auto replaced(R&& source, From&& from, To&& to) noexcept(NO_EXCEPT) { return replaced<replacement_policy::insert_sync, R, From, To>(std::forward<R>(source), std::forward<From>(from), std::forward<To>(to)); } template<alignment ALIGNMENT, internal::resizable_range R, class T = std::ranges::range_value_t<R>> auto align(R&& source, const internal::size_t size, const T& v = T()) noexcept(NO_EXCEPT) { if(std::ssize(source) >= size) return source; if(ALIGNMENT == alignment::left) { R left, right; left = source; right.resize(size - std::size(left), v); return R(ALL(uni::views::concat(left, right))); } if(ALIGNMENT == alignment::center) { R left, center, right; center = source; left.resize((size - std::size(center)) / 2, v); right.resize(size - std::size(center) - std::size(left), v); return R(ALL(uni::views::concat(left, center, right))); } if(ALIGNMENT == alignment::right) { R left, right; right = source; left.resize(size - std::size(right), v); return R(ALL(uni::views::concat(left, right))); } assert(false); } template<internal::resizable_range R, class T = std::ranges::range_value_t<R>> auto ljust(R&& source, const internal::size_t size, const T& v = T()) noexcept(NO_EXCEPT) { return align<alignment::left>(source, size, v); } template<internal::resizable_range R, class T = std::ranges::range_value_t<R>> auto cjust(R&& source, const internal::size_t size, const T& v = T()) noexcept(NO_EXCEPT) { return align<alignment::center>(source, size, v); } template<internal::resizable_range R, class T = std::ranges::range_value_t<R>> auto rjust(R&& source, const internal::size_t size, const T& v = T()) noexcept(NO_EXCEPT) { return align<alignment::right>(source, size, v); } template< class Res, std::ranges::random_access_range Target, std::ranges::forward_range Order > requires std::ranges::output_range<Res, std::ranges::range_value_t<Target>> Res ordered_by(Target&& target, Order&& order) noexcept(NO_EXCEPT) { const auto target_size = std::ranges::ssize(target); const auto order_size = std::ranges::ssize(order); Res res(order_size); { auto res_itr = std::ranges::begin(res); auto order_itr = std::ranges::begin(order); const auto order_end = std::ranges::end(std::forward<Order>(order)); for(; order_itr != order_end; ++res_itr, ++order_itr) { if constexpr(std::signed_integral<std::ranges::range_value_t<Order>>) assert(0 <= *order_itr); assert(*order_itr < target_size); *res_itr = target[*order_itr]; } } return res; } template< std::ranges::random_access_range Target, std::ranges::forward_range Order > auto ordered_by(Target&& target, Order&& order) noexcept(NO_EXCEPT) { return ordered_by<std::remove_cvref_t<Target>, Target, Order>(std::forward<Target>(target), std::forward<Order>(order)); } template<std::ranges::input_range Target, std::ranges::input_range Source> requires std::equality_comparable_with<std::ranges::range_value_t<Target>, std::ranges::range_value_t<Source>> auto is_subsequence_of(Target&& target, Source&& source) noexcept(NO_EXCEPT) { auto target_itr = std::ranges::begin(source); auto source_itr = std::ranges::begin(source); const auto target_end = std::ranges::end(source); const auto source_end = std::ranges::end(source); for(; source_itr != source_end; ++source_itr) { if(*target_itr == *source_itr) ++target_itr; } return target_itr == target_end; } template<std::ranges::input_range Target, std::ranges::input_range Source> requires std::equality_comparable_with<std::ranges::range_value_t<Target>, std::ranges::range_value_t<Source>> auto is_continuous_subsequence_of(Target&& target, Source&& source) noexcept(NO_EXCEPT) { auto found = find(source, target); return found.size() > 0; } } // namespace uni #line 31 "numeric/arithmetic.hpp" namespace uni { template<class T> inline constexpr T div_floor(const T& x, const T& d) noexcept(NO_EXCEPT) { if constexpr(std::is_integral_v<T>) { return x / d - (x % d && ((x < 0) ^ (d < 0))); } else { return std::floor(x / d); } } template<class T> inline constexpr T div_ceil(const T& x, const T& d) noexcept(NO_EXCEPT) { if constexpr(std::is_integral_v<T>) { return div_floor(x + d - 1, d); } else { return std::ceil(x / d); } } template<class T> inline constexpr T div_round(const T& x, const T& d) noexcept(NO_EXCEPT) { if constexpr(std::is_integral_v<T>) { return div_round<ld>(x, d); } else { return std::round(x / d); } } template<class T> inline constexpr std::make_signed_t<T> to_signed(const T& x) noexcept(NO_EXCEPT) { return std::bit_cast<std::make_signed_t<T>>(x); } template<class T> inline constexpr std::make_unsigned_t<T> to_unsigned(const T& x) noexcept(NO_EXCEPT) { return std::bit_cast<std::make_unsigned_t<T>>(x); } namespace internal { template<class T> inline constexpr auto perm(const T& n, const T& r) noexcept(NO_EXCEPT) { T res = 1; REP(i, r) res *= n - i; return res; } template<class T> inline constexpr auto comb(const T& n, T r) noexcept(NO_EXCEPT) { if(n < 2 * r) r = n - r; T p = 1, q = 1; REP(i, r) p *= n - i, q *= r - i; return p / q; } } // namespace internal template<class T0, std::common_with<T0> T1> inline constexpr auto perm(const T0& n, const T1& r) noexcept(NO_EXCEPT) { assert(n >= 0), assert(r >= 0); using T = std::common_type_t<T0, T1>; if(n < r) return static_cast<T>(0); return internal::perm<T>(n, r); } template<class T0, std::common_with<T0> T1> inline constexpr auto comb(const T0& n, const T1& r) noexcept(NO_EXCEPT) { assert(n >= 0), assert(r >= 0); using T = std::common_type_t<T0, T1>; if(n < r) return static_cast<T>(0); if(n == r) return static_cast<T>(1); return internal::comb<T>(n, r); } template<class T, class U, std::invocable<T, T> F = std::multiplies<>> constexpr T pow(T x, U n, F mul = F(), T one = static_cast<T>(1)) noexcept(NO_EXCEPT) { if(n == 0) return one; if(n == 1 || x == one) return x; T res = one; while(true) { if(n & 1) res = mul(res, x); x = mul(x, x); if(n == 0) return res; n >>= 1; } assert(false); } using atcoder::pow_mod; using atcoder::inv_mod; using atcoder::crt; template<class T> inline constexpr T sign(const T& x) noexcept(NO_EXCEPT) { if(x == 0) return 0; return (x > 0) ? 1 : -1; } template<class T, T FROM_MIN, T FROM_MAX, T TO_MIN, T TO_MAX> inline constexpr T mapping(const T x) { return (x - FROM_MIN) * (TO_MAX - TO_MIN) / (FROM_MAX - FROM_MIN) + TO_MIN; } template<class T> inline constexpr T mapping(const T x, const T from_min, const T from_max, const T to_min, const T to_max) { return (x - from_min) * (to_max - to_min) / (from_max - from_min) + to_min; } template<class... Args> inline constexpr std::common_type_t<Args...> min(const Args&... args) noexcept(NO_EXCEPT) { return std::min({ static_cast<std::common_type_t<Args...>>(args)... }); } template<class... Args> inline constexpr std::common_type_t<Args...> max(const Args&... args) noexcept(NO_EXCEPT) { return std::max({ static_cast<std::common_type_t<Args...>>(args)... }); } template<class T> inline constexpr T gcd(const std::initializer_list<T> args) noexcept(NO_EXCEPT) { return gcd(ALL(args)); } template<class... Args> inline constexpr std::common_type_t<Args...> gcd(const Args&... args) noexcept(NO_EXCEPT) { return gcd({ static_cast<std::common_type_t<Args...>>(args)... }); } template<class T> inline constexpr T lcm(const std::initializer_list<T> args) noexcept(NO_EXCEPT) { return lcm(ALL(args)); } template<class... Args> inline constexpr std::common_type_t<Args...> lcm(const Args&... args) noexcept(NO_EXCEPT) { return lcm({ static_cast<std::common_type_t<Args...>>(args)... }); } template<std::integral T0, std::integral T1> inline constexpr std::optional<std::common_type_t<T0, T1>> add_overflow(const T0& a, const T1& b) noexcept(NO_EXCEPT) { std::common_type_t<T0, T1> res; if(__builtin_add_overflow(a, b, &res)) return {}; return res; } template<std::integral T0, std::integral T1> inline constexpr std::optional<std::common_type_t<T0, T1>> sub_overflow(const T0& a, const T1& b) noexcept(NO_EXCEPT) { std::common_type_t<T0, T1> res; if(__builtin_sub_overflow(a, b, &res)) return {}; return res; } template<std::integral T0, std::integral T1> inline constexpr std::optional<std::common_type_t<T0, T1>> mul_overflow(const T0& a, const T1& b) noexcept(NO_EXCEPT) { std::common_type_t<T0, T1> res; if(__builtin_mul_overflow(a, b, &res)) return {}; return res; } template<std::integral T0, std::integral T1, std::integral Limit> inline auto add_clamp(const T0 x, const T1 y, const Limit inf, const Limit sup) noexcept(NO_EXCEPT) { using Common = std::common_type_t<T0, T1, Limit>; const auto res = add_overflow<Common>(x, y); if(!res) { if(x < 0 && y < 0) return inf; if(x > 0 && y > 0) return sup; assert(false); } return std::clamp<Common>(*res, inf, sup); } template<std::integral T0, std::integral T1, std::integral Limit> inline auto sub_clamp(const T0 x, const T1 y, const Limit inf, const Limit sup) noexcept(NO_EXCEPT) { using Common = std::common_type_t<T0, T1, Limit>; const auto res = sub_overflow<Common>(x, y); if(!res) { if(x < 0 && y > 0) return inf; if(x > 0 && y < 0) return sup; assert(false); } return std::clamp<Common>(*res, inf, sup); } template<std::integral T0, std::integral T1, std::integral Limit> inline auto mul_clamp(const T0 x, const T1 y, const Limit inf, const Limit sup) noexcept(NO_EXCEPT) { using Common = std::common_type_t<T0, T1, Limit>; const auto res = mul_overflow<Common>(x, y); if(!res) { if((x > 0) xor (y > 0)) return inf; else return sup; assert(false); } return std::clamp<Common>(*res, inf, sup); } template<class T> inline constexpr T sqrt_floor(const T x) noexcept(NO_EXCEPT) { return static_cast<T>(std::sqrt(static_cast<long double>(x))); } template<class T> inline constexpr T sqrt_ceil(const T x) noexcept(NO_EXCEPT) { T res = sqrt_floor(x); if constexpr(std::is_floating_point_v<T>) { while(res * res < x) res += 1; } else { while(mul_overflow(res, res).value_or(std::numeric_limits<T>::max()) < x) ++res; } return res; } template<class T, std::integral K> inline constexpr T kth_root_floor(T x, const K k) noexcept(NO_EXCEPT) { assert(x >= 0); if(std::signed_integral<K>) assert(k > 0); if(x <= 1 or k == 1) return x; constexpr auto DIGITS = std::numeric_limits<T>::digits; if(k >= DIGITS) return T{1}; if(k == 2) return sqrt_floor(x); constexpr auto MAX = std::numeric_limits<T>::max(); if(x == MAX) --x; auto pow = [&](T t, i64 p) { if(p == 0) return T{1}; T res = 1; while(p) { if(p & 1) { res = mul_overflow(res, t).value_or(MAX); } t = mul_overflow(t, t).value_or(MAX); p >>= 1; } return res; }; auto res = static_cast<T>(std::pow(x, std::nextafter(1 / static_cast<double>(k), 0))); while(pow(res + 1, k) <= x) ++res; return res; } template<std::integral T> T inline constexpr extended_gcd(const T& a, const T& b, T& x, T& y) noexcept { if(b == 0) { x = 1; y = 0; return a; } const T d = extended_gcd(b, a%b, y, x); y -= a / b * x; return d; }; template<std::integral T> std::pair<T, spair<T>> inline constexpr extended_gcd(const T& a, const T& b) noexcept { T x, y; const T d = extended_gcd(a, b, x, y); return { d, spair<T>{ x, y } }; }; template<std::integral T> std::optional<spair<T>> inline constexpr bezout_equation(const T& a, const T& b, const T& c) noexcept { if(a == 0) { if(b == 0) { if(c == 0) return spair<T>{ 0, 0 }; else { }; } if(c % b == 0) return spair<T>{ 0, c / b }; return {}; } if(b == 0) { const auto ans = bezout_equation(b, a, c); if(ans.has_value()) return swapped(ans.value()); return {}; } T x, y; const T gcd = extended_gcd(a, b, x, y); if(c % gcd != 0) return {}; const T p = c / gcd; return spair<T>{ x * p, y * p }; }; } // namespace uni #line 12 "numeric/quotient_enumerator.hpp" namespace uni { template<class T, bool CEIL = false> struct quotient_enumerator { using value_type = std::tuple<T,T,T>; // (q, l, r) using size_type = T; private: T _n = 0, _n_impl = 0; size_type _size = -1; protected: using iterator_interface = internal::bidirectional_iterator_interface<const value_type>; public: // Enumerate tuple of (q, l, r), which means (floor/ceil)(_n/k) == q (l <= k <= r). quotient_enumerator(const T n) noexcept(NO_EXCEPT) : _n(n), _n_impl(n - CEIL) { assert(n > 0); } struct iterator; using const_iterator = iterator; inline auto begin() noexcept(NO_EXCEPT) { return iterator(this->_n_impl, 1); } inline auto end() noexcept(NO_EXCEPT) { return iterator(this->_n_impl, this->_n + 1); } inline auto rbegin() noexcept(NO_EXCEPT) { return std::make_reverse_iterator(this->end()); } inline auto rend() noexcept(NO_EXCEPT) { return std::make_reverse_iterator(this->begin()); } inline auto size() noexcept(NO_EXCEPT) { if(this->_size < 0) { size_type r = uni::sqrt_floor(this->_n_impl); this->_size = 2 * r - (this->_n_impl < r * (r + 1)) + CEIL; } return this->_size; } struct iterator : virtual iterator_interface { using value_type = quotient_enumerator::value_type; using reference = value_type; protected: T _n_impl = 0; T _q = 0, _l = 0, _r = 0; void _set_l(const T l) noexcept(NO_EXCEPT) { this->_l = l, this->_q = this->_n_impl / l; if(this->_q == 0) { if(CEIL) { if(l == this->_n_impl + 1) this->_r = l; } return; } this->_r = this->_n_impl / this->_q; } void _set_r(const T r) noexcept(NO_EXCEPT) { this->_r = r, this->_q = this->_n_impl / r; this->_l = this->_n_impl / (this->_q + 1) + 1; } public: iterator() noexcept = default; iterator(const T n, const T l) noexcept(NO_EXCEPT) : _n_impl(n) { this->_set_l(l); } friend inline bool operator==(const iterator& lhs, const iterator& rhs) noexcept(NO_EXCEPT) { return lhs._l == rhs._l; } inline value_type operator*() const noexcept(NO_EXCEPT) { return { this->_q + CEIL, this->_l, this->_r }; } inline auto& operator++() noexcept(NO_EXCEPT) { this->_set_l(this->_r + 1); return *this; } inline auto& operator--() noexcept(NO_EXCEPT) { this->_set_r(this->_l - 1); return *this; } inline auto operator++(int) noexcept(NO_EXCEPT) { const auto res = *this; this->_set_l(this->_r + 1); return res; } inline auto operator--(int) noexcept(NO_EXCEPT) { const auto res = *this; this->_set_r(this->_l - 1); return res; } }; }; } // namespace uni namespace std::ranges { template<class T> inline constexpr bool enable_borrowed_range<uni::quotient_enumerator<T>> = true; } // namespace std::ranges