#include "include/data_structures.hpp"
#pragma once #include "data_structure/adaptor/set.hpp" #include "data_structure/bit_vector.hpp" #include "data_structure/disjoint_set.hpp" #include "data_structure/disjoint_sparse_table.hpp" #include "data_structure/dynamic_segment_tree.hpp" #include "data_structure/dynamic_sequence.hpp" #include "data_structure/dynamic_set.hpp" #include "data_structure/fenwick_tree.hpp" #include "data_structure/foldable_deque.hpp" #include "data_structure/foldable_queue.hpp" #include "data_structure/foldable_stack.hpp" #include "data_structure/kth_element.hpp" #include "data_structure/lazy_segment_tree.hpp" #include "data_structure/persistent_queue.hpp" #include "data_structure/persistent_stack.hpp" #include "data_structure/red_black_tree.hpp" #include "data_structure/removable_priority_queue.hpp" #include "data_structure/restorable_stack.hpp" #include "data_structure/segment_tree.hpp" #include "data_structure/segment_tree_rooter.hpp" #include "data_structure/treap.hpp" #include "data_structure/wavelet_matrix.hpp"
#line 2 "include/data_structures.hpp" #line 2 "data_structure/adaptor/set.hpp" #include <cstdint> #include <optional> #include <type_traits> #include <iterator> #include <concepts> #include <ranges> #line 2 "internal/dev_env.hpp" #ifdef LOCAL_JUDGE inline constexpr bool DEV_ENV = true; inline constexpr bool NO_EXCEPT = false; #else inline constexpr bool DEV_ENV = false; inline constexpr bool NO_EXCEPT = true; #endif // LOCAL_JUDGE #if __cplusplus >= 202100L #define CPP20 true #define CPP23 true #elif __cplusplus >= 202002L #define CPP20 true #define CPP23 false #else #define CPP20 false #define CPP23 false #endif #line 2 "internal/types.hpp" #line 4 "internal/types.hpp" namespace uni { namespace internal { using size_t = std::int64_t; using int128_t = __int128_t; using uint128_t = __uint128_t; } // namesapce internal } // namespace uni #line 2 "internal/concepts.hpp" #line 7 "internal/concepts.hpp" #include <limits> #include <functional> namespace uni { namespace internal { template<class R, class T> concept convertibel_range = std::convertible_to<std::ranges::range_value_t<R>, T>; template<class T, class V> concept item_or_convertible_range = std::convertible_to<T, V> || convertibel_range<T, V>; template<class Structure> concept available = requires () { typename Structure; }; template< template<class...> class Structure, class... TemplateParameters > concept available_with = available<Structure<TemplateParameters...>>; template<class T> concept arithmetic = std::is_arithmetic_v<T>; template<class T> concept pointer = std::is_pointer_v<T>; template<class T> concept structural = std::is_class_v<T>; template<class Large, class Small> concept has_double_digits_of = (std::numeric_limits<Large>::digits == 2 * std::numeric_limits<Small>::digits); template<class Large, class Small> concept has_more_digits_than = (std::numeric_limits<Large>::digits > std::numeric_limits<Small>::digits); template<class Large, class Small> concept has_or_more_digits_than = (std::numeric_limits<Large>::digits >= std::numeric_limits<Small>::digits); template<class T> concept has_static_zero = requires { T::zero; }; template<class T> concept has_static_one = requires { T::one; }; template<class L, class R = L> concept weakly_bitand_calcurable = requires (L lhs, R rhs) { lhs & rhs; }; template<class L, class R = L> concept weakly_bitor_calcurable = requires (L lhs, R rhs) { lhs | rhs; }; template<class L, class R = L> concept weakly_bitxor_calcurable = requires (L lhs, R rhs) { lhs ^ rhs; }; template<class L, class R = L> concept weakly_addable = requires (L lhs, R rhs) { lhs + rhs; }; template<class L, class R = L> concept weakly_subtractable = requires (L lhs, R rhs) { lhs - rhs; }; template<class L, class R = L> concept weakly_multipliable = requires (L lhs, R rhs) { lhs * rhs; }; template<class L, class R = L> concept weakly_divisable = requires (L lhs, R rhs) { lhs / rhs; }; template<class L, class R = L> concept weakly_remainder_calculable = requires (L lhs, R rhs) { lhs % rhs; }; template<class L, class R = L> concept weakly_bitand_assignable = requires (L lhs, R rhs) { lhs += rhs; }; template<class L, class R = L> concept weakly_bitor_assignable = requires (L lhs, R rhs) { lhs |= rhs; }; template<class L, class R = L> concept weakly_bitxor_assignable = requires (L lhs, R rhs) { lhs ^= rhs; }; template<class L, class R = L> concept weakly_addition_assignable = requires (L lhs, R rhs) { lhs += rhs; }; template<class L, class R = L> concept weakly_subtraction_assignable = requires (L lhs, R rhs) { lhs -= rhs; }; template<class L, class R = L> concept weakly_multipliation_assignalbe = requires (L lhs, R rhs) { lhs *= rhs; }; template<class L, class R = L> concept weakly_division_assignable = requires (L lhs, R rhs) { lhs /= rhs; }; template<class L, class R = L> concept weakly_remainder_assignable = requires (L lhs, R rhs) { lhs /= rhs; }; template<class L, class R = L> concept bitand_calculable = weakly_bitand_calcurable<L, R> && weakly_bitand_calcurable<std::invoke_result_t<std::bit_and<>&, L, R>, R> && weakly_bitand_calcurable<L, std::invoke_result_t<std::bit_and<>&, L, R>> && weakly_bitand_calcurable<std::invoke_result_t<std::bit_and<>&, L, R>, std::invoke_result_t<std::bit_and<>&, L, R>>; template<class L, class R = L> concept bitor_calculable = weakly_bitor_calcurable<L, R> && weakly_bitor_calcurable<std::invoke_result_t<std::bit_or<>&, L, R>, R> && weakly_bitor_calcurable<L, std::invoke_result_t<std::bit_or<>&, L, R>> && weakly_bitor_calcurable<std::invoke_result_t<std::bit_or<>&, L, R>, std::invoke_result_t<std::bit_or<>&, L, R>>; template<class L, class R = L> concept bitxor_calculable = weakly_bitxor_calcurable<L, R> && weakly_bitxor_calcurable<std::invoke_result_t<std::bit_xor<>&, L, R>, R> && weakly_bitxor_calcurable<L, std::invoke_result_t<std::bit_xor<>&, L, R>> && weakly_bitxor_calcurable<std::invoke_result_t<std::bit_xor<>&, L, R>, std::invoke_result_t<std::bit_xor<>&, L, R>>; template<class L, class R = L> concept addable = weakly_addable<L, R> && weakly_addable<std::invoke_result_t<std::plus<>&, L, R>, R> && weakly_addable<L, std::invoke_result_t<std::plus<>&, L, R>> && weakly_addable<std::invoke_result_t<std::plus<>&, L, R>, std::invoke_result_t<std::plus<>&, L, R>>; template<class L, class R = L> concept subtractable = weakly_subtractable<L, R> && weakly_subtractable<std::invoke_result_t<std::minus<>&, L, R>, R> && weakly_subtractable<L, std::invoke_result_t<std::minus<>&, L, R>> && weakly_subtractable<std::invoke_result_t<std::minus<>&, L, R>, std::invoke_result_t<std::minus<>&, L, R>>; template<class L, class R = L> concept multipliable = weakly_multipliable<L, R> && weakly_multipliable<std::invoke_result_t<std::multiplies<>&, L, R>, R> && weakly_multipliable<L, std::invoke_result_t<std::multiplies<>&, L, R>> && weakly_multipliable<std::invoke_result_t<std::multiplies<>&, L, R>, std::invoke_result_t<std::multiplies<>&, L, R>>; template<class L, class R = L> concept divisable = weakly_divisable<L, R> && weakly_divisable<std::invoke_result_t<std::divides<>&, L, R>, R> && weakly_divisable<L, std::invoke_result_t<std::divides<>&, L, R>> && weakly_divisable<std::invoke_result_t<std::divides<>&, L, R>, std::invoke_result_t<std::divides<>&, L, R>>; template<class L, class R = L> concept remainder_calculable = weakly_remainder_calculable<L, R> && weakly_remainder_calculable<std::invoke_result_t<std::modulus<>&, L, R>, R> && weakly_remainder_calculable<L, std::invoke_result_t<std::modulus<>&, L, R>> && weakly_remainder_calculable<std::invoke_result_t<std::modulus<>&, L, R>, std::invoke_result_t<std::modulus<>&, L, R>>; template<class L, class R = L> concept bitand_assignable = weakly_bitand_assignable<L, R> && weakly_bitand_assignable<std::invoke_result_t<std::bit_and<>&, L, R>, R> && weakly_bitand_assignable<L, std::invoke_result_t<std::bit_and<>&, L, R>> && weakly_bitand_assignable<std::invoke_result_t<std::bit_and<>&, L, R>, std::invoke_result_t<std::bit_and<>&, L, R>>; template<class L, class R = L> concept bitor_assignable = weakly_bitor_calcurable<L, R> && weakly_bitor_calcurable<std::invoke_result_t<std::bit_or<>&, L, R>, R> && weakly_bitor_calcurable<L, std::invoke_result_t<std::bit_or<>&, L, R>> && weakly_bitor_calcurable<std::invoke_result_t<std::bit_or<>&, L, R>, std::invoke_result_t<std::bit_or<>&, L, R>>; template<class L, class R = L> concept bitxor_assignable = weakly_bitxor_calcurable<L, R> && weakly_bitxor_calcurable<std::invoke_result_t<std::bit_xor<>&, L, R>, R> && weakly_bitxor_calcurable<L, std::invoke_result_t<std::bit_xor<>&, L, R>> && weakly_bitxor_calcurable<std::invoke_result_t<std::bit_xor<>&, L, R>, std::invoke_result_t<std::bit_xor<>&, L, R>>; template<class L, class R = L> concept addition_assignable = weakly_addition_assignable<L, R> && weakly_addition_assignable<std::remove_cvref_t<std::invoke_result_t<std::plus<>&, L, R>>, R> && weakly_addition_assignable<L, std::invoke_result_t<std::plus<>&, L, R>> && weakly_addition_assignable<std::remove_cvref_t<std::invoke_result_t<std::plus<>&, L, R>>, std::invoke_result_t<std::plus<>&, L, R>>; template<class L, class R = L> concept subtraction_assignable = weakly_subtraction_assignable<L, R> && weakly_subtraction_assignable<std::remove_cvref_t<std::invoke_result_t<std::minus<>&, L, R>>, R> && weakly_subtraction_assignable<L, std::invoke_result_t<std::minus<>&, L, R>> && weakly_subtraction_assignable<std::remove_cvref_t<std::invoke_result_t<std::minus<>&, L, R>>, std::invoke_result_t<std::minus<>&, L, R>>; template<class L, class R = L> concept multipliation_assignalbe = weakly_multipliation_assignalbe<L, R> && weakly_multipliation_assignalbe<std::remove_cvref_t<std::invoke_result_t<std::multiplies<>&, L, R>>, R> && weakly_multipliation_assignalbe<L, std::invoke_result_t<std::multiplies<>&, L, R>> && weakly_multipliation_assignalbe<std::remove_cvref_t<std::invoke_result_t<std::multiplies<>&, L, R>>, std::invoke_result_t<std::multiplies<>&, L, R>>; template<class L, class R = L> concept division_assignable = weakly_division_assignable<L, R> && weakly_division_assignable<std::remove_cvref_t<std::invoke_result_t<std::divides<>&, L, R>>, R> && weakly_division_assignable<L, std::invoke_result_t<std::divides<>&, L, R>> && weakly_division_assignable<std::remove_cvref_t<std::invoke_result_t<std::divides<>&, L, R>>, std::invoke_result_t<std::divides<>&, L, R>>; template<class L, class R = L> concept remainder_assignable = weakly_remainder_assignable<L, R> && weakly_remainder_assignable<std::remove_cvref_t<std::invoke_result_t<std::modulus<>&, L, R>>, R> && weakly_remainder_assignable<L, std::invoke_result_t<std::modulus<>&, L, R>> && weakly_remainder_assignable<std::remove_cvref_t<std::invoke_result_t<std::modulus<>&, L, R>>, std::invoke_result_t<std::modulus<>&, L, R>>; template<class T> concept weakly_incrementable = std::movable<T> && requires (T v) { { ++v } -> std::same_as<T&>; v++; }; template<class T> concept weakly_decrementable = std::movable<T> && requires (T v) { { --v } -> std::same_as<T&>; v--; }; template<class T> concept incrementable = std::regular<T> && weakly_incrementable<T> && requires (T v) { { v++ } -> std::same_as<T>; }; template<class T> concept decrementable = std::regular<T> && weakly_decrementable<T> && requires (T v) { { v-- } -> std::same_as<T>; }; template<class L, class R = L> concept weakly_arithmetic_operable = weakly_addable<L, R> && weakly_subtractable<L, R> && weakly_multipliable<L, R> && weakly_divisable<L, R>; template<class L, class R = L> concept weakly_arithmetic_operation_assignable = weakly_addition_assignable<L, R> && weakly_subtraction_assignable<L, R> && weakly_multipliation_assignalbe<L, R> && weakly_division_assignable<L, R>; template<class L, class R = L> concept arithmetic_operable = weakly_arithmetic_operable<L, R> && addable<L, R> && subtractable<L, R> && multipliable<L, R> && divisable<L, R>; template<class L, class R = L> concept arithmetic_operation_assignable = weakly_arithmetic_operation_assignable<L, R> && addition_assignable<L, R> && subtraction_assignable<L, R> && multipliation_assignalbe<L, R> && division_assignable<L, R>; template<class T> concept unary_addable = requires (T v) { { +v } -> std::same_as<T>; }; template<class T> concept unary_subtractable = requires (T v) { { -v } -> std::same_as<T>; }; template<class T> concept numeric = std::regular<T> && arithmetic_operable<T> && arithmetic_operation_assignable<T> && weakly_incrementable<T> && unary_addable<T> && unary_subtractable<T>; } // namespace internal } // namespace uni #line 15 "data_structure/adaptor/set.hpp" #line 2 "global/constants.hpp" #line 6 "global/constants.hpp" #include <utility> #include <cmath> #line 2 "snippet/aliases.hpp" #line 6 "snippet/aliases.hpp" #include <vector> #line 8 "snippet/aliases.hpp" #line 2 "snippet/internal/types.hpp" #line 4 "snippet/internal/types.hpp" namespace uni { using i16 = std::int16_t; using u16 = std::uint16_t; using i32 = std::int32_t; using u32 = std::uint32_t; using i64 = std::int64_t; using u64 = std::uint64_t; #ifdef __GNUC__ using i128 = __int128_t; using u128 = __uint128_t; using f128 = __float128; #endif using uint = unsigned; using ll = long long; using ull = unsigned long long; using ld = long double; } // namespace uni #line 12 "snippet/aliases.hpp" #define until(...) while(!(__VA_ARGS__)) #define CONTINUE(...) { __VA_ARGS__; continue; } #define BREAK(...) { __VA_ARGS__; break; } #define ALL(x) std::ranges::begin((x)),std::ranges::end((x)) #define RALL(x) std::ranges::rbegin((x)),std::ranges::rend((x)) #define $F first #define $S second namespace uni { constexpr char LN = '\n'; constexpr char SPC = ' '; constexpr std::pair<int,int> DIRS4[] = { { -1, 0 }, { 0, 1 }, { 1, 0 }, { 0, -1 } }; constexpr std::pair<int,int> DIRS4P[] = { { -1, 0 }, { 0, 1 }, { 1, 0 }, { 0, -1 }, { 0, 0 } }; constexpr std::pair<int,int> DIRS8[] = { { -1, 0 }, { -1, 1 }, { 0, 1 }, { 1, 1 }, { 1, 0 }, { 1, -1 }, { 0, -1 }, { -1, -1 } }; constexpr std::pair<int,int> DIRS8P[] = { { -1, 0 }, { -1, 1 }, { 0, 1 }, { 1, 1 }, { 1, 0 }, { 1, -1 }, { 0, -1 }, { -1, -1 }, { 0, 0 } }; template<class T> using spair = std::pair<T,T>; } // namespace uni namespace std { using bit_reference = std::vector<bool>::reference; bit_reference operator |= (bit_reference a, const bool b) noexcept(NO_EXCEPT) { return a = a | b; } bit_reference operator &= (bit_reference a, const bool b) noexcept(NO_EXCEPT) { return a = a & b; } } #line 11 "global/constants.hpp" #line 2 "internal/type_traits.hpp" #include <iostream> #line 7 "internal/type_traits.hpp" #include <algorithm> #line 9 "internal/type_traits.hpp" #line 12 "internal/type_traits.hpp" namespace uni { namespace internal { template<class... Ts> struct tuple_or_pair { using type = std::tuple<Ts...>; }; template<class T, class U> struct tuple_or_pair<T,U> { using type = std::pair<T, U>; }; template <class... Ts> using tuple_or_pair_t = typename tuple_or_pair<Ts...>::type; template<class T> constexpr std::underlying_type_t<T> to_underlying(const T& v) noexcept(NO_EXCEPT) { return static_cast<std::underlying_type_t<T>>(v); } template<class T, class... Ts> using are_same = std::conjunction<std::is_same<T, Ts>...>; template<class T, class... Ts> inline constexpr bool are_same_v = are_same<T, Ts...>::value; template<class T, class... Ts> using is_same_as_any_of = std::disjunction<std::is_same<T, Ts>...>; template<class T, class... Ts> inline constexpr bool is_same_as_any_of_v = is_same_as_any_of<T, Ts...>::value; template<class T, class... Ts> concept same_as_any_of = is_same_as_any_of_v<T, Ts...>; template<class Base, class... Derived> using is_base_of_all = std::conjunction<std::is_base_of<Base, Derived>...>; template<class Base, class... Derived> inline constexpr bool is_base_of_all_v = is_base_of_all<Base, Derived...>::value; template<class Base, class... Derived> using is_base_of_any = std::disjunction<std::is_base_of<Base, Derived>...>; template<class Base, class... Derived> inline constexpr bool is_base_of_any_v = is_base_of_any<Base, Derived...>::value; template<class T> struct remove_cvref { using type = typename std::remove_cv_t<std::remove_reference_t<T>>; }; template<class T> using remove_cvref_t = typename remove_cvref<T>::type; template<class T> struct literal_operator { static constexpr const char* value = ""; }; template<> struct literal_operator<unsigned> { static constexpr const char* value = "U"; }; template<> struct literal_operator<long> { static constexpr const char* value = "L"; }; template<> struct literal_operator<unsigned long> { static constexpr const char* value = "UL"; }; template<> struct literal_operator<long long> { static constexpr const char* value = "LL"; }; template<> struct literal_operator<unsigned long long> { static constexpr const char* value = "ULL"; }; template<> struct literal_operator<float> { static constexpr const char* value = "F"; }; template<> struct literal_operator<double> { static constexpr const char* value = "D"; }; template<> struct literal_operator<long double> { static constexpr const char* value = "LD"; }; #ifdef __SIZEOF_INT128__ template<> struct literal_operator<__int128_t> { static constexpr const char* value = "LLL"; }; template<> struct literal_operator<__uint128_t> { static constexpr const char* value = "ULLL"; }; #endif template<class T> inline constexpr auto literal_operator_v = literal_operator<T>::value; template <std::size_t N, typename... Types> struct nth_type {}; template <class Head, class... Tail> struct nth_type<0, Head, Tail...> { using type = Head; }; template <std::size_t N, class Head, class... Tail> struct nth_type<N, Head, Tail...> : public nth_type<N - 1, Tail...> {}; template <std::size_t N, typename... Types> using nth_type_t = typename nth_type<N, Types...>::type; template<template <class...> class, class> struct is_template_of : std::false_type {}; template<template <class...> class Template, class... Args> struct is_template_of<Template, Template<Args...>> : std::true_type {}; template<template <class...> class Template, class Type> inline constexpr bool is_template_of_v = is_template_of<Template, Type>::value; template<class Type, template <class...> class Template> concept substituted_from = is_template_of_v<Template, Type>; template<template <class...> class Base, class Derived> struct _is_basic_tempalte_of { template<class... Ts> static constexpr std::true_type test(const Base<Ts...> *); static constexpr std::false_type test(...); using type = decltype(test(std::declval<Derived*>())); }; template<template <class...> class Base, class Derived> using is_basic_tempalte_of = _is_basic_tempalte_of<Base, Derived>::type; template<template <class...> class Base, class Derived> inline constexpr bool is_basic_tempalte_of_v = is_basic_tempalte_of<Base, Derived>::value; template<class Derived, template <class...> class Base> concept derived_from_template = is_basic_tempalte_of_v<Base, Derived>; template<class T> struct is_loggable { template<class U> static constexpr auto External(U &&v) -> decltype(_debug(v), std::true_type()); static constexpr std::false_type External(...); template<class U> static constexpr auto Member(U &&v) -> decltype(v._debug(), std::true_type()); static constexpr std::false_type Member(...); static constexpr bool value = ( decltype(External(std::declval<T>()))::value || decltype(Member(std::declval<T>()))::value ); }; template<class T> inline constexpr auto is_loggable_v = is_loggable<T>::value; template<class T> concept loggable = is_loggable_v<T>; template<class T> struct _has_iterator { template<class U> static constexpr auto ADL(U &&v) -> decltype(begin(v), end(v), std::true_type()); static constexpr std::false_type ADL(...); template<class U> static constexpr auto STL(U &&v) -> decltype(std::begin(v), std::end(v), std::true_type()); static constexpr std::false_type STL(...); template<class U> static constexpr auto Member(U &&v) -> decltype(v.begin(), v.end(), std::true_type()); static constexpr std::false_type Member(...); }; template<class T> struct has_iterator { struct ADL : decltype(_has_iterator<T>::ADL(std::declval<T>())) {}; struct STL : decltype(_has_iterator<T>::STL(std::declval<T>())) {}; struct Member : decltype(_has_iterator<T>::Member(std::declval<T>())) {}; static constexpr auto adl_v = ADL::value; static constexpr auto stl_v = STL::value; static constexpr auto member_v = Member::value; }; template<class T> struct is_iterable { static constexpr bool value = has_iterator<T>::adl_v || has_iterator<T>::stl_v || has_iterator<T>::member_v; }; template<class T> inline constexpr auto is_iterable_v = is_iterable<T>::value; template<class T> concept iterable = is_iterable_v<T>; namespace iterator_resolver { template<class T> inline constexpr auto begin(T&& v) noexcept(NO_EXCEPT) { static_assert(is_iterable_v<T>); if constexpr(has_iterator<T>::member_v) { return v.begin(); } else { // ADL using std::begin; return begin(std::forward<T>(v)); } } template<class T> inline constexpr auto end(T&& v) noexcept(NO_EXCEPT) { static_assert(is_iterable_v<T>); if constexpr(has_iterator<T>::member_v) { return v.end(); } else { // ADL using std::end; return end(std::forward<T>(v)); } } }; template<class C> using iterator_t = decltype(iterator_resolver::begin(std::declval<C&>())); template<class C> using container_size_t = decltype(std::size(std::declval<C&>())); template<bool Const, class T> using maybe_const_t = std::conditional_t<Const, const T, T>; template<class T> using with_ref = T&; template<class T> concept can_reference = requires { typename with_ref<T>; }; } // namespace internal } // namespace uni #line 2 "internal/exception.hpp" namespace uni { namespace internal { template<class... T> inline constexpr bool EXCEPTION_ON_TYPE = false; template<auto T> inline constexpr bool EXCEPTION_ON_VALUE = false; } // namespace internal } // namespace uni #line 14 "global/constants.hpp" #line 2 "numeric/limits.hpp" #line 6 "numeric/limits.hpp" #line 9 "numeric/limits.hpp" #line 11 "numeric/limits.hpp" namespace uni { template<class T> struct numeric_limits : std::numeric_limits<T> { static constexpr long double FLOAT_EPSILON = 1E-14; static constexpr T arithmetic_infinity() noexcept(NO_EXCEPT) { return std::numeric_limits<T>::max() / 2 - 1; } static constexpr T arithmetic_negative_infinity() noexcept(NO_EXCEPT) { return std::numeric_limits<T>::lowest() / 2 + 1; } static constexpr T arithmetic_epsilon() noexcept(NO_EXCEPT) { if constexpr(std::is_floating_point_v<T>) { return numeric_limits::FLOAT_EPSILON; } else { return 0; } } }; constexpr i32 INF32 = numeric_limits<i32>::arithmetic_infinity(); constexpr i64 INF64 = numeric_limits<i64>::arithmetic_infinity(); template<class T> constexpr T INF = numeric_limits<T>::arithmetic_infinity(); template<class T> constexpr T EPSILON = numeric_limits<T>::arithmetic_epsilon(); } // namespace uni #line 16 "global/constants.hpp" namespace uni { namespace internal { template<class T> consteval auto get_pi() { if constexpr(std::integral<T>) { return static_cast<T>(3); } else if constexpr(std::same_as<T, float>) { return M_PIf; } else if constexpr(std::same_as<T, double>) { return M_PI; } else if constexpr(std::same_as<T, ld>) { return M_PIl; } else { static_assert(EXCEPTION_ON_TYPE<T>); } } } // namespace internal template<class T = ld> constexpr auto PI = internal::get_pi<T>(); enum class comparison : std::uint8_t { equal_to, not_equal_to, equals = equal_to, eq = equal_to, under, over, or_under, or_over, less = under, more = over, less_than = under, more_than = over, not_less_than = or_over, not_more_than = or_under, leq = or_under, geq = or_over }; enum class interval_notation : std::uint8_t { right_open, left_open, open, closed, }; enum class replacement_policy : std::uint8_t { insert_sync, overwrite_sync, overwrite_async }; enum class rotation : std::int8_t { clockwise, counter_clockwise, anti_clockwise = counter_clockwise, }; enum class positional_relation : std::int8_t { clockwise, counter_clockwise, anti_clockwise = counter_clockwise, backward, forward, in, on, out, included = in, inscribed, intersecting, circumscribed, distant, }; enum class alignment : std::int8_t { left, center, right }; } // namespace uni #line 17 "data_structure/adaptor/set.hpp" #line 2 "data_structure/segment_tree.hpp" #include <cassert> #line 10 "data_structure/segment_tree.hpp" #include <bit> #line 2 "snippet/iterations.hpp" #line 2 "macro/overload.hpp" #define $OVERLOAD2(arg0, arg1, cmd, ...) cmd #define $OVERLOAD3(arg0, arg1, arg2, cmd, ...) cmd #define $OVERLOAD4(arg0, arg1, arg2, arg3, cmd, ...) cmd #define $OVERLOAD5(arg0, arg1, arg2, arg3, arg4, cmd, ...) cmd #define $OVERLOAD6(arg0, arg1, arg2, arg3, arg4, arg5, cmd, ...) cmd #line 2 "macro/basic.hpp" #define TO_STRING_AUX(x) #x #define TO_STRING(x) TO_STRING_AUX(x) #define CONCAT_AUX(x, y) x##y #define CONCAT(x, y) CONCAT_AUX(x, y) #define UNPAREN_AUX(...) __VA_ARGS__ #define UNPAREN(...) __VA_ARGS__ #line 6 "snippet/iterations.hpp" #define LOOP(n) REPI(CONCAT(_$, __COUNTER__), n) #define REPI(i,n) for(std::remove_cvref_t<decltype(n)> i=0, CONCAT(i, $)=(n); i<CONCAT(i, $); ++i) #define REPF(i,l,r) for(std::common_type_t<std::remove_cvref_t<decltype(l)>,std::remove_cvref_t<decltype(r)>> i=(l), CONCAT(i, $)=(r); i<CONCAT(i, $); ++i) #define REPIS(i,l,r,s) for(std::common_type_t<std::remove_cvref_t<decltype(l)>,std::remove_cvref_t<decltype(r)>,std::remove_cvref_t<decltype(s)>> i=(l), CONCAT(i, $)=(r); i<CONCAT(i, $); i+=(s)) #define REPR(i,n) for(auto i=(n); --i>=0;) #define REPB(i,l,r) for(std::common_type_t<std::remove_cvref_t<decltype(l)>,std::remove_cvref_t<decltype(r)>> i=(r), CONCAT(i, $)=(l); --i>=CONCAT(i, $);) #define REPRS(i,l,r,s) for(std::common_type_t<std::remove_cvref_t<decltype(l)>,std::remove_cvref_t<decltype(r)>,std::remove_cvref_t<decltype(s)>> i=(l)+((r)-(l)-1)/(s)*(s), CONCAT(i, $)=(l); i>=CONCAT(i, $); (i-=(s))) #define REP(...) $OVERLOAD4(__VA_ARGS__, REPIS, REPF, REPI, LOOP)(__VA_ARGS__) #define REPD(...) $OVERLOAD4(__VA_ARGS__, REPRS, REPB, REPR)(__VA_ARGS__) #define FORO(i,n) for(int i=0, CONCAT(i, $)=static_cast<int>(n); i<=CONCAT(i, $); ++i) #define FORI(i,l,r) for(std::common_type_t<std::remove_cvref_t<decltype(l)>,std::remove_cvref_t<decltype(r)>> i=(l), CONCAT(i, $)=(r); i<=CONCAT(i, $); ++i) #define FORIS(i,l,r,s) for(std::common_type_t<std::remove_cvref_t<decltype(l)>,std::remove_cvref_t<decltype(r)>,std::remove_cvref_t<decltype(s)>> i=(l), CONCAT(i, $)=(r); i<=CONCAT(i, $); i+=(s)) #define FORRO(i,n) for(auto i=(n); i>=0; --i) #define FORR(i,l,r) for(std::common_type_t<std::remove_cvref_t<decltype(l)>,std::remove_cvref_t<decltype(r)>> i=(r), CONCAT(i, $)=(l); i>=CONCAT(i, $); --i) #define FORRS(i,l,r,s) for(std::common_type_t<std::remove_cvref_t<decltype(l)>,std::remove_cvref_t<decltype(r)>,std::remove_cvref_t<decltype(s)>> i=(l)+((r)-(l))/(s)*(s), CONCAT(i, $)=(l); i>=CONCAT(i, $); i-=(s)) #define FOR(...) $OVERLOAD4(__VA_ARGS__, FORIS, FORI, FORO)(__VA_ARGS__) #define FORD(...) $OVERLOAD4(__VA_ARGS__, FORRS, FORR, FORRO)(__VA_ARGS__) #define ITR1(e0,v) for(const auto &e0 : (v)) #define ITRP1(e0,v) for(auto e0 : (v)) #define ITRR1(e0,v) for(auto &e0 : (v)) #define ITR2(e0,e1,v) for(const auto [e0, e1] : (v)) #define ITRP2(e0,e1,v) for(auto [e0, e1] : (v)) #define ITRR2(e0,e1,v) for(auto &[e0, e1] : (v)) #define ITR3(e0,e1,e2,v) for(const auto [e0, e1, e2] : (v)) #define ITRP3(e0,e1,e2,v) for(auto [e0, e1, e2] : (v)) #define ITRR3(e0,e1,e2,v) for(auto &[e0, e1, e2] : (v)) #define ITR4(e0,e1,e2,e3,v) for(const auto [e0, e1, e2, e3] : (v)) #define ITRP4(e0,e1,e2,e3,v) for(auto [e0, e1, e2, e3] : (v)) #define ITRR4(e0,e1,e2,e3,v) for(auto &[e0, e1, e2, e3] : (v)) #define ITR5(e0,e1,e2,e3,e4,v) for(const auto [e0, e1, e2, e3, e4] : (v)) #define ITRP5(e0,e1,e2,e3,e4,v) for(auto [e0, e1, e2, e3, e4] : (v)) #define ITRR5(e0,e1,e2,e3,e4,v) for(auto &[e0, e1, e2, e3, e4] : (v)) #define ITR(...) $OVERLOAD6(__VA_ARGS__, ITR5, ITR4, ITR3, ITR2, ITR1)(__VA_ARGS__) #define ITRP(...) $OVERLOAD6(__VA_ARGS__, ITRP5, ITRP4, ITRP3, ITRP2, ITRP1)(__VA_ARGS__) #define ITRR(...) $OVERLOAD6(__VA_ARGS__, ITRR5, ITRR4, ITRR3, ITRR2, ITRR1)(__VA_ARGS__) #line 14 "data_structure/segment_tree.hpp" #line 2 "internal/iterator.hpp" #line 7 "internal/iterator.hpp" #include <variant> #include <compare> #line 10 "internal/iterator.hpp" #line 13 "internal/iterator.hpp" #line 16 "internal/iterator.hpp" namespace uni { namespace internal { template<class T> struct iterator_interface { using iterator_category = std::output_iterator_tag; using difference_type = size_t; using value_type = T; using pointer = T*; using reference = T&; // virtual T operator*() const noexcept(NO_EXCEPT) { return 0; }; }; template<class T> struct forward_iterator : iterator_interface<T> { using iterator_category = std::forward_iterator_tag; // virtual bidirectional_iterator_interface& operator++() = 0; }; template<class T> struct bidirectional_iterator_interface : forward_iterator<T> { using iterator_category = std::bidirectional_iterator_tag; // virtual bidirectional_iterator_interface& operator--() = 0; }; template<class T> struct random_access_iterator_base : bidirectional_iterator_interface<T> { using iterator_category = std::random_access_iterator_tag; using difference_type = typename bidirectional_iterator_interface<T>::difference_type; public: // virtual random_access_iterator_base& operator+=(const difference_type count) = 0; // virtual random_access_iterator_base& operator-=(const difference_type count) = 0; friend inline random_access_iterator_base operator+(random_access_iterator_base itr, const difference_type count) noexcept(NO_EXCEPT) { return itr += count, itr; } friend inline random_access_iterator_base operator-(random_access_iterator_base itr, const difference_type count) noexcept(NO_EXCEPT) { return itr -= count, itr; } }; template<class T, class Container, class Derived> struct container_iterator_interface : random_access_iterator_base<T> { using difference_type = std::make_signed_t<typename Container::size_type>; private: using derived = std::remove_cvref_t<Derived>; Container* _ref; difference_type _pos; static_assert(std::three_way_comparable<difference_type>); inline auto* _derived() noexcept(NO_EXCEPT) { return static_cast<derived*>(this); } inline const auto* _derived() const noexcept(NO_EXCEPT) { return static_cast<const derived*>(this); } public: container_iterator_interface() noexcept = default; container_iterator_interface(Container *const ref, const difference_type pos) noexcept(NO_EXCEPT) : _ref(ref), _pos(pos) {} inline auto ref() const noexcept(NO_EXCEPT) { return this->_ref; } inline auto pos() const noexcept(NO_EXCEPT) { return this->_pos; } inline auto& pos() { return this->_pos; } inline auto& operator++() noexcept(NO_EXCEPT) { return ++this->_pos, *this->_derived(); } inline auto& operator--() noexcept(NO_EXCEPT) { return --this->_pos, *this->_derived(); } inline auto operator++(int) noexcept(NO_EXCEPT) { auto res = *this->_derived(); return ++this->_pos, res; } inline auto operator--(int) noexcept(NO_EXCEPT) { auto res = *this->_derived(); return --this->_pos, res; } inline auto& operator+=(const difference_type count) noexcept(NO_EXCEPT) { return this->_pos += count, *this->_derived(); } inline auto& operator-=(const difference_type count) noexcept(NO_EXCEPT) { return this->_pos -= count, *this->_derived(); } inline auto operator*() const noexcept(NO_EXCEPT) { return this->ref()->get(this->_pos); } inline auto operator[](const difference_type count) const noexcept(NO_EXCEPT) { return *(*this->_derived() + count); } inline auto operator-(const derived& other) const noexcept(NO_EXCEPT) { return this->_pos - other._pos; } friend inline bool operator==(const derived& lhs, const derived& rhs) noexcept(NO_EXCEPT) { if(lhs.ref() == rhs.ref()) return lhs._pos == rhs._pos; return false; } friend inline std::partial_ordering operator<=>(const derived& lhs, const derived& rhs) noexcept(NO_EXCEPT) { if(lhs.ref() != rhs.ref()) return std::partial_ordering::unordered; return lhs._pos <=> rhs._pos; } }; namespace iterator_impl { template<class... Tags> using is_all_random_access_iterator = is_base_of_all<std::random_access_iterator_tag,Tags...>; template<class... Tags> using is_all_bidirectional_iterator = is_base_of_all<std::bidirectional_iterator_tag,Tags...>; template<class... Tags> using is_all_forward_iterator = is_base_of_all<std::forward_iterator_tag,Tags...>; template<class... Tags> using is_all_input_iterator = is_base_of_all<std::input_iterator_tag,Tags...>; template<class... Tags> constexpr auto _most_primitive_iterator_tag() { if constexpr(is_all_random_access_iterator<Tags...>::value) { return std::random_access_iterator_tag{}; } else if constexpr(is_all_bidirectional_iterator<Tags...>::value) { return std::bidirectional_iterator_tag{}; } else if constexpr(is_all_forward_iterator<Tags...>::value) { return std::forward_iterator_tag{}; } else { return std::input_iterator_tag{}; } } } // namespace iterator_impl template<class... Tags> using most_primitive_iterator_tag = decltype(iterator_impl::_most_primitive_iterator_tag<Tags...>()); template<class T, class = void> struct is_iterator { static constexpr bool value = false; }; template<class T> struct is_iterator<T, typename std::enable_if<!std::is_same<typename std::iterator_traits<T>::value_type, void>::value>::type> { static constexpr bool value = true; }; template<class T> inline constexpr bool is_iterator_v = is_iterator<T>::value; template<class T> using is_iterator_t = std::enable_if_t<is_iterator_v<T>>; template<class T> using iota_diff_t = std::make_signed_t<T>; } // namespace internal } // namespace uni #line 2 "internal/point_reference.hpp" #line 6 "internal/point_reference.hpp" #line 9 "internal/point_reference.hpp" #line 11 "internal/point_reference.hpp" namespace uni { namespace internal { template<class Super, std::integral SizeType = typename Super::size_type> struct point_reference { using size_type = SizeType; using iterator = typename Super::iterator; protected: Super *const _super; const size_type _pos; point_reference(Super *const super, const size_type pos) noexcept(NO_EXCEPT) : _super(super), _pos(pos) {} inline auto index() noexcept(NO_EXCEPT) { return this->_pos; } }; } // namespace internal } // namespace uni #line 2 "internal/range_reference.hpp" #line 8 "internal/range_reference.hpp" #line 11 "internal/range_reference.hpp" #line 13 "internal/range_reference.hpp" namespace uni { namespace internal { template<class Super, std::integral SizeType = typename Super::size_type> struct range_reference { using size_type = SizeType; using iterator = Super::iterator; protected: Super *const _super; const size_type _begin, _end; range_reference(Super *const super, const size_type begin, const size_type end) noexcept(NO_EXCEPT) : _super(super), _begin(begin), _end(end) {} public: inline auto begin() const noexcept(NO_EXCEPT) { return std::ranges::next(std::ranges::begin(*this->_super), this->_begin); } inline auto end() const noexcept(NO_EXCEPT) { return std::ranges::next(std::ranges::begin(*this->_super), this->_end); } inline auto size() const noexcept(NO_EXCEPT) { return this->_end - this->_begin; } inline auto interval() const noexcept(NO_EXCEPT) { return std::make_pair(this->_begin, this->_end); } protected: inline auto sub_range(size_type l, size_type r) const noexcept(NO_EXCEPT) { l = _super->_positivize_index(l), r = _super->_positivize_index(r); assert(0 <= l and l <= r and r <= this->size()); return range_reference(_super, this->_begin + l, this->_begin + r); } public: template<uni::interval_notation rng = uni::interval_notation::right_open> inline auto range(const size_type l, const size_type r) const noexcept(NO_EXCEPT) { if constexpr(rng == uni::interval_notation::right_open) return this->sub_range(l, r); if constexpr(rng == uni::interval_notation::left_open) return this->sub_range(l+1, r+1); if constexpr(rng == uni::interval_notation::open) return this->sub_range(l+1, r); if constexpr(rng == uni::interval_notation::closed) return this->sub_range(l, r+1); } inline auto range() const noexcept(NO_EXCEPT) { return range_reference(this->_begin, this->_end); } inline auto operator()(const size_type l, const size_type r) const noexcept(NO_EXCEPT) { return this->sub_range(l, r); } inline auto subseq(const size_type p, const size_type c) const noexcept(NO_EXCEPT) { return this->sub_range(p, p+c); } inline auto subseq(const size_type p) const noexcept(NO_EXCEPT) { return this->sub_range(p, this->size()); } }; } // namespace internal } // namespace uni #line 2 "internal/unconstructible.hpp" namespace uni { namespace internal { struct unconstructible { private: template<class... Args> unconstructible(Args...) = delete; }; } // namespace internal } // namespace uni #line 21 "data_structure/segment_tree.hpp" #line 2 "numeric/bit.hpp" #include <immintrin.h> #line 8 "numeric/bit.hpp" #include <cstddef> #line 13 "numeric/bit.hpp" #line 16 "numeric/bit.hpp" #line 2 "numeric/arithmetic.hpp" #line 5 "numeric/arithmetic.hpp" #include <cstring> #line 7 "numeric/arithmetic.hpp" #include <string> #line 14 "numeric/arithmetic.hpp" #include <atcoder/math> #line 21 "numeric/arithmetic.hpp" #line 25 "numeric/arithmetic.hpp" #line 2 "utility/internal/functional_base.hpp" namespace uni { template<class P> requires requires(P p) { p.first; p.second; } inline P swapped(P& pair) { return P{ pair.second, pair.first }; } } // namespace uni #line 27 "numeric/arithmetic.hpp" #line 2 "numeric/internal/number_base.hpp" #line 6 "numeric/internal/number_base.hpp" #include <string_view> #line 14 "numeric/internal/number_base.hpp" #line 18 "numeric/internal/number_base.hpp" #line 2 "adaptor/string.hpp" #line 6 "adaptor/string.hpp" #line 2 "adaptor/internal/advanced_container.hpp" #line 8 "adaptor/internal/advanced_container.hpp" #line 11 "adaptor/internal/advanced_container.hpp" #line 15 "adaptor/internal/advanced_container.hpp" #line 2 "numeric/internal/mod.hpp" #line 6 "numeric/internal/mod.hpp" namespace uni { template<class T, class R> requires internal::remainder_calculable<T, R> && internal::subtractable<T, R> && internal::unary_subtractable<T> inline T mod(T x, const R& r) noexcept(NO_EXCEPT) { if(x >= 0) return x % r; x = -x % r; if(x != 0) x = r - x; return x; } } // namespace uni #line 2 "iterable/internal/operation_base.hpp" #line 6 "iterable/internal/operation_base.hpp" #include <sstream> #include <numeric> #line 11 "iterable/internal/operation_base.hpp" namespace uni { template<std::input_iterator I, std::sentinel_for<I> S> std::string join(I first, S last, const char* sep = "") noexcept(NO_EXCEPT) { if(first == last) return ""; std::ostringstream res; while(true) { res << *first; std::ranges::advance(first, 1); if(first == last) break; res << sep; } return res.str(); } template<std::ranges::input_range R> std::string join(R&& range, const char* sep = "") noexcept(NO_EXCEPT) { return join(ALL(range), sep); } template<class I, class T = std::iter_value_t<I>> requires std::sentinel_for<I, I> T sum(I first, I last, const T& base = T()) noexcept(NO_EXCEPT) { return std::accumulate(first, last, base); } template<std::ranges::input_range R, class T = std::ranges::range_value_t<R>> auto sum(R&& range, T base = T()) noexcept(NO_EXCEPT) { auto&& r = range | std::views::common; return sum(ALL(r), base); } } // namesapce uni #line 18 "adaptor/internal/advanced_container.hpp" #define UNI_ADVANCED_CONTAINER_OPERATOR(op_assign, op, concepts) \ auto& operator op_assign(const value_type& v) noexcept(NO_EXCEPT) \ requires concepts<value_type> \ { \ if constexpr(concepts<Base, value_type>) { \ this->Base::operator op_assign(v); \ } \ else { \ REP(itr, ALL(*this)) *itr op_assign v; \ } \ return *this; \ } \ \ auto& operator op_assign(const advanced_container& rhs) noexcept(NO_EXCEPT) \ requires concepts<value_type> \ { \ if constexpr(concepts<Base>) { \ this->Base::operator op_assign(*rhs._base()); \ } \ else { \ auto itr = std::ranges::begin(*this), rhs_itr = std::ranges::begin(rhs); \ auto end = std::ranges::end(*this); \ for(; itr != end; ++itr, ++rhs_itr) { \ *itr op_assign *rhs_itr; \ } \ } \ return *this; \ } \ \ template<class T = value_type> \ requires \ concepts<value_type> && \ (std::convertible_to<T, value_type> || std::same_as<T, advanced_container>) \ friend auto operator op(advanced_container lhs, const T& rhs) noexcept(NO_EXCEPT) { \ return lhs op_assign rhs; \ } \ \ template<class T = value_type> \ requires \ concepts<value_type> && std::convertible_to<T, value_type> \ friend auto operator op(const T& lhs, advanced_container rhs) noexcept(NO_EXCEPT) { \ return advanced_container(rhs.size(), lhs) op_assign rhs; \ } namespace uni { namespace internal { template<class Base> struct advanced_container : Base { private: inline Base* _base() noexcept(NO_EXCEPT) { return static_cast<Base*>(this); } inline const Base* _base() const noexcept(NO_EXCEPT) { return static_cast<const Base*>(this); } public: using Base::Base; advanced_container(const Base& base) : Base(base) {} using size_type = decltype(std::ranges::size(std::declval<Base>())); using value_type = Base::value_type; inline auto ssize() const noexcept(NO_EXCEPT) { return std::ranges::ssize(*this->_base()); } inline const auto& operator[](internal::size_t p) const noexcept(NO_EXCEPT) { p = p < 0 ? p + this->size() : p; assert(0 <= p && p < this->ssize()); return this->Base::operator[](p); } inline auto& operator[](internal::size_t p) noexcept(NO_EXCEPT) { p = p < 0 ? p + this->size() : p; assert(0 <= p && p < this->ssize()); return this->Base::operator[](p); } inline auto& fill(const value_type& v) noexcept(NO_EXCEPT) { std::ranges::fill(*this, v); return *this; } inline auto& swap(const size_type i, const size_type j) noexcept(NO_EXCEPT) { std::swap(this->operator[](i), this->operator[](j)); return *this; } inline auto& sort() noexcept(NO_EXCEPT) { std::ranges::sort(*this); return *this; } template<class F> inline auto& sort(F&& f) noexcept(NO_EXCEPT) { std::ranges::sort(*this, std::forward<F>(f)); return *this; } inline auto& stable_sort() noexcept(NO_EXCEPT) { std::ranges::stable_sort(*this); return *this; } template<class F> inline auto& stable_sort(F&& f) noexcept(NO_EXCEPT) { std::ranges::stable_sort(*this, std::forward<F>(f)); return *this; } inline auto& reverse() noexcept(NO_EXCEPT) { std::ranges::reverse(*this); return *this; } inline auto count(const value_type& v) const noexcept(NO_EXCEPT) { return std::ranges::count(*this, v); } template<class F> inline auto count_if(F&& f) const noexcept(NO_EXCEPT) { return std::ranges::count_if(*this, std::forward<F>(f)); } inline auto& resize(const size_type k) noexcept(NO_EXCEPT) { this->Base::resize(k); return *this; } inline auto& resize(const size_type k, const value_type v) noexcept(NO_EXCEPT) { this->Base::resize(k, v); return *this; } template<class F> inline auto& shuffle(F&& f) noexcept(NO_EXCEPT) { std::ranges::shuffle(*this, std::forward<F>(f)); return *this; } inline auto& unique() noexcept(NO_EXCEPT) { const auto rest = std::ranges::unique(*this); this->erase(ALL(rest)); return *this; } template<class T> inline auto binary_search(const T& v) noexcept(NO_EXCEPT) { return std::ranges::binary_search(*this, v); } template<class T> inline auto lower_bound(const T& v) noexcept(NO_EXCEPT) { return std::ranges::lower_bound(*this, v); } template<class T> inline auto upper_bound(const T& v) noexcept(NO_EXCEPT) { return std::ranges::upper_bound(*this, v); } inline auto join(const char* sep = "") noexcept(NO_EXCEPT) { return uni::join(*this, sep); } inline auto sum() const noexcept(NO_EXCEPT) { return uni::sum(*this); } inline auto max() const noexcept(NO_EXCEPT) { return std::ranges::max(*this->_base()); } inline auto min() const noexcept(NO_EXCEPT) { return std::ranges::min(*this); } inline auto begin() noexcept(NO_EXCEPT) { return std::ranges::begin(*this->_base()); } inline auto begin() const noexcept(NO_EXCEPT) { return std::ranges::begin(*this->_base()); } inline auto end() noexcept(NO_EXCEPT) { return std::ranges::end(*this->_base()); } inline auto end() const noexcept(NO_EXCEPT) { return std::ranges::end(*this->_base()); } UNI_ADVANCED_CONTAINER_OPERATOR(+=, +, internal::weakly_addition_assignable) UNI_ADVANCED_CONTAINER_OPERATOR(-=, -, internal::weakly_subtraction_assignable) UNI_ADVANCED_CONTAINER_OPERATOR(*=, *, internal::weakly_multipliation_assignalbe) UNI_ADVANCED_CONTAINER_OPERATOR(/=, /, internal::weakly_division_assignable) UNI_ADVANCED_CONTAINER_OPERATOR(%=, %, internal::weakly_remainder_assignable) UNI_ADVANCED_CONTAINER_OPERATOR(&=, &, internal::weakly_bitand_assignable) UNI_ADVANCED_CONTAINER_OPERATOR(|=, |, internal::weakly_bitor_assignable) UNI_ADVANCED_CONTAINER_OPERATOR(^=, ^, internal::weakly_bitxor_assignable) }; } // namespace internal } // namespace uni #undef UNI_ADVANCED_CONTAINER_OPERATOR #line 8 "adaptor/string.hpp" namespace uni { using string = internal::advanced_container<std::string>; } // namespace uni namespace std { template<> struct hash<uni::string> { inline auto operator()(const uni::string& key) const noexcept(NO_EXCEPT) { return std::hash<std::string>{}(static_cast<std::string>(key)); } }; } #line 2 "adaptor/vector.hpp" #line 6 "adaptor/vector.hpp" #line 9 "adaptor/vector.hpp" namespace uni { template<class... Args> using vector = internal::advanced_container<std::vector<Args...>>; } // namespace uni #line 21 "numeric/internal/number_base.hpp" namespace uni { template<std::size_t B, class T> uni::string to_base_n_string(T v) noexcept(NO_EXCEPT) { constexpr std::string_view CHARS = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; static_assert(0 < B and B <= std::ranges::size(CHARS)); assert(0 <= v); uni::string res; while(v > 0) { res += CHARS[v%B]; v /= B; } std::reverse(ALL(res)); return res; } template<class T> uni::string to_base_n_string(T v, const uni::internal::size_t b) noexcept(NO_EXCEPT) { constexpr std::string_view CHARS = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; assert(1 < b && b <= std::ranges::ssize(CHARS)); assert(0 <= v); if(v == 0) return "0"; uni::string res; while(v > 0) { res += CHARS[v % b]; v /= b; } std::reverse(ALL(res)); return res; } template<class T> uni::vector<T> to_base_n_vector(T v, const uni::internal::size_t b) noexcept(NO_EXCEPT) { assert(1 < b); assert(0 <= v); uni::vector<T> res; while(v > 0) { res.push_back(v%b); v /= b; } return res; } template<std::bidirectional_iterator I, class T = typename std::iterator_traits<I>::value_type> T from_base_n_sequence(I begin, I end, const uni::internal::size_t b) noexcept(NO_EXCEPT) { assert(1 < b); if(begin == end) return 0; T res = 0; for(auto itr=end; itr-- != begin; ) { res *= b; res += *itr; } return res; } template<class T, std::forward_iterator I> T from_base_n_string(I begin, I end, const uni::internal::size_t b) noexcept(NO_EXCEPT) { assert(1 < b); if(begin == end) return 0; T sgn = 1; if(*begin == '-') { sgn = -1; ++begin; } T res = 0; for(auto itr=begin; itr != end; ++itr) { res *= b; if('0' <= *itr && *itr <= '9') { res += *itr - '0'; } else if('a' <= *itr && *itr <= 'z') { res += *itr - 'a' + 10; } else if('A' <= *itr && *itr <= 'Z'){ res += *itr - 'A' + 10; } else { assert(false); } } return res * sgn; } template<std::ranges::bidirectional_range R, class T = std::ranges::range_value_t<R>> requires std::ranges::common_range<R> T from_base_n_sequence(R range, const uni::internal::size_t b) noexcept(NO_EXCEPT) { return from_base_n_sequence(std::ranges::begin(range), std::ranges::end(range), b); } template<class T, std::ranges::bidirectional_range R> requires std::ranges::common_range<R> T from_base_n_string(R range, const uni::internal::size_t b) noexcept(NO_EXCEPT) { return from_base_n_string<T>(std::ranges::begin(range), std::ranges::end(range), b); } } // namespace uni #line 29 "numeric/arithmetic.hpp" #line 2 "iterable/operation.hpp" #line 6 "iterable/operation.hpp" #include <initializer_list> #line 9 "iterable/operation.hpp" #include <valarray> #line 17 "iterable/operation.hpp" #line 21 "iterable/operation.hpp" #line 2 "internal/ranges.hpp" #line 6 "internal/ranges.hpp" #include <tuple> #line 11 "internal/ranges.hpp" namespace uni { namespace internal { template<class Range> concept resizable_range = std::ranges::range<Range> && requires (Range& r) { r.resize(0); }; template<class range> concept simple_view = std::ranges::view<range> && std::ranges::range<const range> && std::same_as<std::ranges::iterator_t<range>, std::ranges::iterator_t<const range>> && std::same_as<std::ranges::sentinel_t<range>, std::ranges::sentinel_t<const range>>; template<class... Ranges> concept zip_is_common = (sizeof...(Ranges) == 1 && (std::ranges::common_range<Ranges> && ...)) || (!(std::ranges::bidirectional_range<Ranges> && ...) && (std::ranges::common_range<Ranges> && ...)) || ((std::ranges::random_access_range<Ranges> && ...) && (std::ranges::sized_range<Ranges> && ...)); template<bool Const, class... Views> concept all_contiguous = (std::ranges::contiguous_range<maybe_const_t<Const, Views>> && ...); template<bool Const, class... Views> concept all_random_access = (std::ranges::random_access_range<maybe_const_t<Const, Views>> && ...); template<bool Const, class... Views> concept all_bidirectional = (std::ranges::bidirectional_range<maybe_const_t<Const, Views>> && ...); template<bool Const, class... Views> concept all_forward = (std::ranges::forward_range<maybe_const_t<Const, Views>> && ...); template<bool Const, class... Views> struct zip_view_iterator_category {}; template<bool Const, class... Views> requires all_forward<Const, Views...> struct zip_view_iterator_category<Const, Views...> { using iterator_category = std::input_iterator_tag; }; template<bool Const, class... Views> static auto _most_primitive_iterator_concept() noexcept(NO_EXCEPT) { if constexpr(all_random_access<Const, Views...>) return std::random_access_iterator_tag{}; else if constexpr(all_bidirectional<Const, Views...>) return std::bidirectional_iterator_tag{}; else if constexpr(all_forward<Const, Views...>) return std::forward_iterator_tag{}; else return std::input_iterator_tag{}; } template<bool Const, class... Views> using most_primitive_iterator_concept = decltype(_most_primitive_iterator_concept<Const, Views...>()); template<class Range, bool Const> using range_iterator_category = typename std::iterator_traits< std::ranges::iterator_t<maybe_const_t<Const, Range>> >::iterator_category; template<class Range> static constexpr auto _iterator_concept() noexcept(NO_EXCEPT) { if constexpr(std::ranges::random_access_range<Range>) return std::random_access_iterator_tag{}; else if constexpr(std::ranges::bidirectional_range<Range>) return std::bidirectional_iterator_tag{}; else if constexpr(std::ranges::forward_range<Range>) return std::forward_iterator_tag{}; else return std::input_iterator_tag{}; } template<class Range> using iterator_concept = decltype(_iterator_concept<Range>()); template<std::ranges::range Range> struct cached_position { constexpr bool has_value() const { return false; } constexpr std::ranges::iterator_t<Range> get(const Range&) const { __builtin_unreachable(); } constexpr void set(const Range &, const std::ranges::iterator_t<Range> &) const {} }; template<std::ranges::forward_range Range> struct cached_position<Range> : protected std::optional<std::ranges::iterator_t<Range>> { using std::optional<std::ranges::iterator_t<Range>>::optioanl; using std::optional<std::ranges::iterator_t<Range>>::has_value; constexpr std::ranges::iterator_t<Range> get(const Range&) const { assert(this->has_value()); return **this; } constexpr void set(const Range&, const std::ranges::iterator_t<Range>& itr) { assert(!this->has_value()); this->emplace(*itr); } }; template<std::ranges::random_access_range Range> requires(sizeof(std::ranges::range_difference_t<Range>) <= sizeof(std::ranges::iterator_t<Range>)) struct cached_position<Range> { private: std::ranges::range_difference_t<Range> _offset = -1; public: cached_position() = default; constexpr cached_position(const cached_position &) = default; constexpr cached_position(cached_position &&other) noexcept { *this = std::move(other); } constexpr cached_position &operator=(const cached_position &) = default; constexpr cached_position &operator=(cached_position &&other) noexcept { // Propagate the cached offset, but invalidate the source. this->_offset = other._offset; other._offset = -1; return *this; } constexpr bool has_value() const { return this->_offset >= 0; } constexpr std::ranges::iterator_t<Range> get(Range& range) const { assert(this->has_value()); return std::ranges::begin(range) + this->_offset; } constexpr void set(Range &range, const std::ranges::iterator_t<Range> &itr) { assert(!this->has_value()); this->_offset = itr - std::ranges::begin(range); } }; template<typename T, int Disc> struct absent { }; template<bool PRESENT, class T, int Disc = 0> using maybe_present_t = std::conditional_t<PRESENT, T, absent<T, Disc>>; } // namespace internal namespace views::adaptor { template<class Adaptor, class... Args> concept adaptor_invocable = requires { std::declval<Adaptor>()(std::declval<Args>()...); }; template<class Adaptor, class... Args> concept adaptor_partial_app_viable = (Adaptor::arity > 1) && (sizeof...(Args) == Adaptor::arity - 1) && (std::constructible_from<std::remove_cvref_t<Args>, Args> && ...); template<class Adaptor, class... Args> struct partial; template<class, class> struct pipe; template<class Derived> struct range_adaptor_closure {}; template<class T, class U> requires(!std::same_as<T, range_adaptor_closure<U>>) void is_range_adaptor_closure_fn(const T &, const range_adaptor_closure<U> &); template<class T> concept is_range_adaptor_closure = requires(T t) { adaptor::is_range_adaptor_closure_fn(t, t); }; template<class Self, class Range> requires is_range_adaptor_closure<Self> && adaptor_invocable<Self, Range> constexpr auto operator|(Range&& range, Self&& self) { return std::forward<Self>(self)(std::forward<Range>(range)); } template<class Lhs, class Rhs> requires is_range_adaptor_closure<Lhs> && is_range_adaptor_closure<Rhs> constexpr auto operator|(Lhs&& lhs, Rhs&& rhs) { return pipe<std::remove_cvref_t<Lhs>, std::remove_cvref_t<Rhs>>{ std::forward<Lhs>(lhs), std::forward<Rhs>(rhs)}; } template<class Derived> struct range_adaptor { template<class... Args> requires adaptor_partial_app_viable<Derived, Args...> inline constexpr auto operator()(Args&& ..._args) const noexcept(NO_EXCEPT) { return partial<Derived, std::remove_cvref_t<Args>...>{ std::forward<Args>(_args)... }; } }; template<class Adaptor> concept closure_has_simple_call_op = Adaptor::has_simple_call_op; template<class Adaptor, class... Args> concept adaptor_has_simple_extra_args = Adaptor::has_simple_extra_args || Adaptor::template has_simple_extra_args<Args...>; template<class Adaptor, class... Args> struct partial : range_adaptor_closure<partial<Adaptor, Args...>> { std::tuple<Args...> args; constexpr partial(Args... _args) noexcept(NO_EXCEPT) : args(std::move(_args)...) {} template<class Range> requires adaptor_invocable<Adaptor, Range, const Args &...> inline constexpr auto operator()(Range&& range) const & noexcept(NO_EXCEPT) { const auto forwarder = [&range](const auto &..._args) constexpr noexcept(NO_EXCEPT) { return Adaptor{}(std::forward<Range>(range), _args...); }; return std::apply(forwarder, this->args); } template<class Range> requires adaptor_invocable<Adaptor, Range, Args...> inline constexpr auto operator()(Range&& range) && noexcept(NO_EXCEPT) { const auto forwarder = [&range](auto &..._args) constexpr noexcept(NO_EXCEPT) { return Adaptor{}(std::forward<Range>(range), std::move(_args)...); }; return std::apply(forwarder, this->args); } template<class Range> inline constexpr auto operator()(Range&& range) const && = delete; }; template<class Adaptor, class Arg> struct partial<Adaptor, Arg> : range_adaptor_closure<partial<Adaptor, Arg>> { Arg arg; constexpr partial(Arg _arg) noexcept(NO_EXCEPT) : arg(std::move(_arg)) {} template<class Range> requires adaptor_invocable<Adaptor, Range, const Arg &> inline constexpr auto operator()(Range&& range) const & noexcept(NO_EXCEPT) { return Adaptor{}(std::forward<Range>(range), this->arg); } template<class Range> requires adaptor_invocable<Adaptor, Range, Arg> inline constexpr auto operator()(Range&& range) && noexcept(NO_EXCEPT) { return Adaptor{}(std::forward<Range>(range), std::move(this->arg)); } template<class Range> inline constexpr auto operator()(Range&& range) const && = delete; }; template<class Adaptor, class... Args> requires adaptor_has_simple_extra_args<Adaptor, Args...> && (std::is_trivially_copyable_v<Args> && ...) struct partial<Adaptor, Args...> : range_adaptor_closure<partial<Adaptor, Args...>> { std::tuple<Args...> args; constexpr partial(Args... _args) noexcept(NO_EXCEPT) : args(std::move(_args)...) {} template<class Range> requires adaptor_invocable<Adaptor, Range, const Args &...> inline constexpr auto operator()(Range&& range) const noexcept(NO_EXCEPT) { const auto forwarder = [&range](const auto &..._args) constexpr noexcept(NO_EXCEPT) { return Adaptor{}(std::forward<Range>(range), _args...); }; return std::apply(forwarder, this->args); } static constexpr bool has_simple_call_op = true; }; template<class Adaptor, class Arg> requires adaptor_has_simple_extra_args<Adaptor, Arg> && std::is_trivially_copyable_v<Arg> struct partial<Adaptor, Arg> : range_adaptor_closure<partial<Adaptor, Arg>> { Arg arg; constexpr partial(Arg _arg) noexcept(NO_EXCEPT) : arg(std::move(_arg)) {} template<class Range> requires adaptor_invocable<Adaptor, Range, const Arg &> inline constexpr auto operator()(Range&& range) const noexcept(NO_EXCEPT) { return Adaptor{}(std::forward<Range>(range), this->arg); } static constexpr bool has_simple_call_op = true; }; template<class Lhs, class Rhs, class Range> concept pipe_invocable = requires { std::declval<Rhs>()(std::declval<Lhs>()(std::declval<Range>())); }; template<class Lhs, class Rhs> struct pipe : range_adaptor_closure<pipe<Lhs, Rhs>> { [[no_unique_address]] Lhs lhs; [[no_unique_address]] Rhs rhs; constexpr pipe(Lhs _lhs, Rhs _rhs) noexcept(NO_EXCEPT) : lhs(std::move(_lhs)), rhs(std::move(_rhs)) {} template<class Range> requires pipe_invocable<const Lhs &, const Rhs &, Range> inline constexpr auto operator()(Range&& range) const & noexcept(NO_EXCEPT) { return rhs(lhs(std::forward<Range>(range))); } template<class Range> requires pipe_invocable<Lhs, Rhs, Range> inline constexpr auto operator()(Range&& range) && noexcept(NO_EXCEPT) { return std::move(rhs)(std::move(lhs)(std::forward<Range>(range))); } template<class Range> inline constexpr auto operator()(Range&& range) const && = delete; }; template<class Lhs, class Rhs> requires closure_has_simple_call_op<Lhs> && closure_has_simple_call_op<Rhs> struct pipe<Lhs, Rhs> : range_adaptor_closure<pipe<Lhs, Rhs>> { [[no_unique_address]] Lhs lhs; [[no_unique_address]] Rhs rhs; constexpr pipe(Lhs _lhs, Rhs _rhs) noexcept(NO_EXCEPT) : lhs(std::move(_lhs)), rhs(std::move(_rhs)) {} template<class Range> requires pipe_invocable<const Lhs &, const Rhs &, Range> inline constexpr auto operator()(Range&& range) const noexcept(NO_EXCEPT) { return rhs(lhs(std::forward<Range>(range))); } static constexpr bool has_simple_call_op = true; }; } // namespace views::adaptor } // namespace uni #line 28 "iterable/operation.hpp" #line 2 "iterable/z_array.hpp" #line 6 "iterable/z_array.hpp" #line 9 "iterable/z_array.hpp" #line 2 "adaptor/valarray.hpp" #line 11 "adaptor/valarray.hpp" #line 14 "adaptor/valarray.hpp" #line 16 "adaptor/valarray.hpp" namespace uni { template<class T> struct valarray : internal::advanced_container<std::valarray<T>> { private: using base = internal::advanced_container<std::valarray<T>>; public: using size_type = internal::size_t; using iterator = T*; using const_iterator = const T*; protected: inline bool _validate_index_in_right_open([[maybe_unused]] const size_type p) const noexcept(NO_EXCEPT) { return 0 <= p and p < this->size(); } inline bool _validate_index_in_closed([[maybe_unused]] const size_type p) const noexcept(NO_EXCEPT) { return 0 <= p and p <= this->size(); } inline bool _validate_rigth_open_interval([[maybe_unused]] const size_type l, [[maybe_unused]] const size_type r) const noexcept(NO_EXCEPT) { return 0 <= l and l <= r and r <= this->size(); } inline size_type _positivize_index(const size_type p) const noexcept(NO_EXCEPT) { return p < 0 ? this->size() + p : p; } public: valarray() noexcept(NO_EXCEPT) {} explicit valarray(const std::size_t length, const T& val = T{}) noexcept(NO_EXCEPT) : base(val, length) {} template<std::input_iterator I, std::sentinel_for<I> S> valarray(I first, S last) noexcept(NO_EXCEPT) : base(std::ranges::distance(first, last)) { std::ranges::copy(first, last, std::ranges::begin(*this)); } template<class U> valarray(const U* pointer, const size_t n) noexcept(NO_EXCEPT) : base(pointer, n) {}; valarray(const std::slice_array<T>& arr) noexcept(NO_EXCEPT) : base(arr) {}; valarray(const std::gslice_array<T>& arr) noexcept(NO_EXCEPT) : base(arr) {}; valarray(const std::mask_array<T>& arr) noexcept(NO_EXCEPT) : base(arr) {}; valarray(const std::indirect_array<T>& arr) noexcept(NO_EXCEPT) : base(arr) {}; valarray(const std::initializer_list<T>& init) noexcept(NO_EXCEPT) : base(init) {} valarray(const internal::advanced_container<std::valarray<T>>& arr) noexcept(NO_EXCEPT) : base(arr) {} #ifdef __GNUC__ template<class Dom> valarray(const std::_Expr<Dom,T>& expr) noexcept(NO_EXCEPT) : base(expr) {} #endif inline auto size() const noexcept(NO_EXCEPT) { return static_cast<size_type>(this->base::size()); } inline void reserve(const size_type) noexcept(NO_EXCEPT) { /* do nothing */ } template<std::input_iterator I, std::sentinel_for<I> S> inline void assign(I first, S last) noexcept(NO_EXCEPT) { this->resize(std::ranges::distance(first, last)); std::ranges::copy(first, last, std::ranges::begin(*this)); } inline void assign(const std::size_t length, const T& val = T{}) noexcept(NO_EXCEPT) { this->base::resize(length, val); } inline void resize(const std::size_t length, const T& val = T{}) noexcept(NO_EXCEPT) { base temp = *this; this->assign(length, val); std::move(std::begin(temp), std::min(std::end(temp), std::next(std::begin(temp), length)), std::begin(*this)); } inline const T& operator[](size_type pos) const noexcept(NO_EXCEPT) { pos = this->_positivize_index(pos), assert(this->_validate_index_in_right_open(pos)); return this->base::operator[](pos); } inline T& operator[](size_type pos) noexcept(NO_EXCEPT) { pos = this->_positivize_index(pos), assert(this->_validate_index_in_right_open(pos)); return this->base::operator[](pos); } inline const T& back() const noexcept(NO_EXCEPT) { return *std::prev(this->end()); } inline T& back() noexcept(NO_EXCEPT) { return *std::prev(this->end()); } inline const T& front() const noexcept(NO_EXCEPT) { return *this->begin(); } inline T& front() noexcept(NO_EXCEPT) { return *this->begin(); } inline auto rbegin() noexcept(NO_EXCEPT) { return std::make_reverse_iterator(std::ranges::end(*this)); } inline auto rend() noexcept(NO_EXCEPT) { return std::make_reverse_iterator(std::ranges::begin(*this)); } inline auto rbegin() const noexcept(NO_EXCEPT) { return std::make_reverse_iterator(std::ranges::end(*this)); } inline auto rend() const noexcept(NO_EXCEPT) { return std::make_reverse_iterator(std::ranges::begin(*this)); } }; } // namespace uni #line 11 "iterable/z_array.hpp" namespace uni { // Thanks to: atcoder::z_algorithm template<class SizeType = internal::size_t, class Container = valarray<SizeType>> struct z_array : Container { using size_type = SizeType; template<std::input_iterator I, std::sentinel_for<I> S> z_array(I first, S last) : Container(std::ranges::distance(first, last), {}) { const size_type n = static_cast<size_type>(std::ranges::distance(first, last)); if(n == 0) return; for(size_type i = 1, j = 0; i < n; ++i) { size_type& k = this->operator[](i); k = (j + this->operator[](j) <= i) ? 0 : std::ranges::min(j + this->operator[](j) - i, this->operator[](i - j)); while(i + k < n and first[k] == first[i + k]) ++k; if(j + this->operator[](j) < i + this->operator[](i)) j = i; } *this->begin() = n; } template<std::ranges::input_range R> explicit z_array(R&& range) : z_array(ALL(range)) {} }; } // namespace uni #line 31 "iterable/operation.hpp" #line 2 "view/concat.hpp" #line 11 "view/concat.hpp" #line 18 "view/concat.hpp" namespace uni { namespace internal { namespace view_impl { template<std::ranges::input_range V0, std::ranges::input_range V1> requires std::ranges::view<V0> && std::ranges::view<V1> struct concat_view : std::ranges::view_interface<concat_view<V0, V1>> { private: V0 _b0; V1 _b1; template<bool Const> using B0 = internal::maybe_const_t<Const, V0>; template<bool Const> using B1 = internal::maybe_const_t<Const, V1>; template<bool Const> struct iterator_tag {}; template<bool Const> requires std::ranges::forward_range<B0<Const>> && std::ranges::forward_range<B1<Const>> struct iterator_tag<Const> { public: using iterator_category = uni::internal::most_primitive_iterator_tag< typename std::iterator_traits<std::ranges::iterator_t<B0<Const>>>::iterator_category, typename std::iterator_traits<std::ranges::iterator_t<B1<Const>>>::iterator_category >; }; public: template<bool> class iterator; constexpr explicit concat_view(V0 v0, V1 v1) noexcept(NO_EXCEPT) : _b0(std::move(v0)), _b1(std::move(v1)) {} inline constexpr std::pair<V0, V1> base() const & noexcept(NO_EXCEPT) requires std::copy_constructible<V0> && std::copy_constructible<V0> { return { this->_b0, this->_b1 }; } inline constexpr std::pair<V0,V1> base() && noexcept(NO_EXCEPT) { return { std::move(this->_b0), std::move(this->_b1) }; } inline constexpr auto begin() noexcept(NO_EXCEPT) requires (!internal::simple_view<V0> && !internal::simple_view<V1>) { return iterator<false>(this, std::ranges::begin(this->_b0), std::ranges::begin(this->_b1), 0); } inline constexpr auto begin() const noexcept(NO_EXCEPT) requires std::ranges::range<const V0> && std::ranges::range<const V1> { return iterator<true>(this, std::ranges::begin(this->_b0), std::ranges::begin(this->_b1), 0); } inline constexpr auto end() noexcept(NO_EXCEPT) requires (!internal::simple_view<V0> && !internal::simple_view<V1>) { if constexpr(std::ranges::common_range<V0> && std::ranges::common_range<V1>) { return iterator<false>(this, std::ranges::end(this->_b0), std::ranges::end(this->_b1), 1); } else { return std::default_sentinel; } } inline constexpr auto end() const noexcept(NO_EXCEPT) requires std::ranges::range<const V0> && std::ranges::range<const V1> { if constexpr(std::ranges::common_range<const V0> && std::ranges::common_range<const V1>) { return iterator<true>(this, std::ranges::end(this->_b0), std::ranges::end(this->_b1), 1); } else { return std::default_sentinel; } } inline constexpr auto size() noexcept(NO_EXCEPT) requires std::ranges::sized_range<V0> && std::ranges::sized_range<V1> { return static_cast<std::size_t>(std::ranges::distance(this->_b0) + std::ranges::distance(this->_b1)); } inline constexpr auto size() const noexcept(NO_EXCEPT) requires std::ranges::sized_range<const V0> && std::ranges::sized_range<const V1> { return static_cast<std::size_t>(std::ranges::distance(this->_b0) + std::ranges::distance(this->_b1)); } }; template<std::ranges::input_range V0, std::ranges::input_range V1> requires std::ranges::view<V0> && std::ranges::view<V1> template<bool Const> struct concat_view<V0, V1>::iterator : iterator_tag<Const> { private: using Parent = internal::maybe_const_t<Const, concat_view>; using B0 = concat_view::B0<Const>; using B1 = concat_view::B1<Const>; std::ranges::iterator_t<B0> _c0 = std::ranges::iterator_t<B0>(); std::ranges::iterator_t<B0> _b0 = std::ranges::iterator_t<B0>(); std::ranges::sentinel_t<B0> _e0 = std::ranges::sentinel_t<B0>(); std::ranges::iterator_t<B1> _c1 = std::ranges::iterator_t<B1>(); std::ranges::iterator_t<B1> _b1 = std::ranges::iterator_t<B1>(); std::ranges::sentinel_t<B1> _e1 = std::ranges::sentinel_t<B1>(); int _block = 0; constexpr iterator(Parent *const parent, const std::ranges::iterator_t<B0> c0, const std::ranges::iterator_t<B1> c1, const int block) noexcept(NO_EXCEPT) : _c0(std::move(c0)), _b0(std::ranges::begin(parent->_b0)), _e0(std::ranges::end(parent->_b0)), _c1(std::move(c1)), _b1(std::ranges::begin(parent->_b1)), _e1(std::ranges::end(parent->_b1)), _block(block || std::ranges::empty(parent->_b0)) {} friend concat_view; public: using difference_type = std::common_type_t<std::ranges::range_difference_t<B0>, std::ranges::range_difference_t<B1>>; using value_type = std::common_type_t<std::ranges::range_value_t<B0>, std::ranges::range_value_t<B1>>; using reference_type = std::common_reference_t<std::ranges::range_reference_t<B0>, std::ranges::range_reference_t<B1>>; using iterator_concept = most_primitive_iterator_concept<Const, V0, V1>; iterator() noexcept(NO_EXCEPT) requires std::default_initializable<std::ranges::iterator_t<B0>> && std::default_initializable<std::ranges::iterator_t<B0>> = default; constexpr iterator(iterator<!Const> itr) noexcept(NO_EXCEPT) requires Const && std::convertible_to<std::ranges::iterator_t<V0>, std::ranges::iterator_t<B0>> && std::convertible_to<std::ranges::sentinel_t<V0>, std::ranges::sentinel_t<B0>> && std::convertible_to<std::ranges::iterator_t<V1>, std::ranges::iterator_t<B1>> && std::convertible_to<std::ranges::sentinel_t<V1>, std::ranges::sentinel_t<B1>> : _c0(std::move(itr._c0)), _b0(std::move(itr._b0)), _e0(std::move(itr._e0)), _c1(std::move(itr._c0)), _b1(std::move(itr._b0)), _e1(std::move(itr._e1)), _block(itr._block) {} inline constexpr std::variant<std::ranges::iterator_t<B0>, std::ranges::iterator_t<B1>> base() && noexcept(NO_EXCEPT) { if(this->_block == 0) return std::move(this->_c0); else return std::move(this->_C1); } inline constexpr std::variant< std::reference_wrapper<const std::ranges::iterator_t<B0>>, std::reference_wrapper<const std::ranges::iterator_t<B1>> > base() const & noexcept { if(this->_block == 0) return std::move(this->_c0); else return std::move(this->_c1); } inline constexpr reference_type operator*() const noexcept(NO_EXCEPT) { if(this->_block == 0) return *this->_c0; else return *this->_c1; } inline constexpr iterator& operator++() noexcept(NO_EXCEPT) { assert(this->_c0 != this->_e0 or this->_c1 != this->_e1); if(this->_block == 0) { if(++this->_c0 == this->_e0) { this->_block = 1; assert(this->_c1 == this->_b1); } } else { ++this->_c1; } return *this; } inline constexpr void operator++(int) noexcept(NO_EXCEPT) { ++*this; } inline constexpr iterator operator++(int) noexcept(NO_EXCEPT) requires std::ranges::forward_range<B0> && std::ranges::forward_range<B1> { const auto res = *this; ++*this; return res; } inline constexpr iterator& operator--() noexcept(NO_EXCEPT) requires std::ranges::bidirectional_range<B0> && std::ranges::bidirectional_range<B1> && std::bidirectional_iterator<std::ranges::sentinel_t<B0>> { if(this->_block == 1) { if(this->_c1 == this->_b1) { this->_block = 0; this->_c0 = std::ranges::prev(this->_e0); } else { --this->_c1; } } else { --this->_c0; } return *this; } inline constexpr iterator operator--(int) noexcept(NO_EXCEPT) requires std::ranges::bidirectional_range<B0> && std::ranges::bidirectional_range<B1> { const auto res = *this; --*this; return res; } inline constexpr iterator& operator+=(const difference_type diff) noexcept(NO_EXCEPT) requires std::ranges::random_access_range<B0> && std::ranges::random_access_range<B1> { if(diff > 0) { if(this->_block == 0) { const auto missing = std::ranges::advance(this->_c0, diff, this->_e0); if(this->_c0 == this->_e0) { this->_block = 1; assert(this->_c1 == this->_b1); std::ranges::advance(this->_c1, missing, this->_e1); } } else { std::ranges::advance(this->_c1, diff, this->_e1); } } if(diff < 0) { if(this->_block == 1) { const auto missing = std::ranges::advance(this->_c1, diff, this->_b1); if(missing < 0) { this->_block = 0; assert(this->_c0 == this->_e0); std::ranges::advance(this->_c0, missing, this->_b0); } } else { std::ranges::advance(this->_c0, diff, this->_b0); } } return *this; } inline constexpr iterator& operator-=(const difference_type diff) noexcept(NO_EXCEPT) requires std::ranges::random_access_range<B0> && std::ranges::random_access_range<B1> { return *this += -diff; } inline constexpr decltype(auto) operator[](const difference_type diff) const noexcept(NO_EXCEPT) requires std::ranges::random_access_range<B0> && std::ranges::random_access_range<B1> { return *(*this + diff); } friend inline constexpr bool operator==(const iterator& lhs, std::default_sentinel_t) noexcept(NO_EXCEPT) { if(lhs._block == 0) return false; if(lhs._block == 1) return lhs._c1 == lhs._e1; assert(false); } friend inline constexpr bool operator==(const iterator& lhs, const iterator& rhs) noexcept(NO_EXCEPT) requires std::equality_comparable<std::ranges::iterator_t<B0>> && std::equality_comparable<std::ranges::iterator_t<B1>> { if(lhs._block != rhs._block) return false; return lhs._block == 0 ? lhs._c0 == rhs._c0 : lhs._c1 == rhs._c1; } friend inline constexpr auto operator<=>(const iterator& lhs, const iterator& rhs) noexcept(NO_EXCEPT) requires std::ranges::random_access_range<B0> && std::ranges::random_access_range<B1> { if(lhs._block != rhs._block) return lhs._block <=> rhs._block; return lhs._block == 0 ? lhs._c0 <=> rhs._c0 : lhs._c1 <=> rhs._c1; } friend inline constexpr iterator operator+(const iterator& itr, const difference_type diff) noexcept(NO_EXCEPT) requires std::ranges::random_access_range<B0> && std::ranges::random_access_range<B1> { auto res = itr; res += diff; return res; } friend inline constexpr iterator operator+(const difference_type diff, const iterator& itr) noexcept(NO_EXCEPT) requires std::ranges::random_access_range<B0> && std::ranges::random_access_range<B1> { return itr + diff; } friend inline constexpr iterator operator-(const iterator& itr, const difference_type diff) noexcept(NO_EXCEPT) requires std::ranges::random_access_range<B0> && std::ranges::random_access_range<B1> { auto res = itr; res -= diff; return res; } friend inline constexpr const difference_type operator-(const iterator& lhs, const iterator& rhs) noexcept(NO_EXCEPT) requires std::sized_sentinel_for<std::ranges::iterator_t<B0>, std::ranges::iterator_t<B0>> && std::sized_sentinel_for<std::ranges::iterator_t<B1>, std::ranges::iterator_t<B1>> { if(lhs._block == rhs._block) { return lhs._block == 0 ? std::ranges::distance(rhs._c0, lhs._c0) : std::ranges::distance(rhs._c1, lhs._c1); } if(lhs._block > rhs._block) return std::ranges::distance(rhs._c0, rhs._e0) + std::ranges::distance(lhs._b1, lhs._c1); if(lhs._block < rhs._block) return -(rhs - lhs); assert(false); } friend inline constexpr const difference_type operator-(std::default_sentinel_t, const iterator& rhs) noexcept(NO_EXCEPT) requires std::sized_sentinel_for<std::ranges::sentinel_t<B0>, std::ranges::iterator_t<B0>> && std::sized_sentinel_for<std::ranges::sentinel_t<B1>, std::ranges::iterator_t<B1>> { if(rhs._block == 0) return std::ranges::distance(rhs._c0, rhs._e0) + std::ranges::distance(rhs._b1, rhs._e1); if(rhs._block == 1) return std::ranges::distance(rhs._c1, rhs._e1); assert(false); } friend inline constexpr const difference_type operator-(const iterator& lhs, std::default_sentinel_t rhs) noexcept(NO_EXCEPT) requires std::sized_sentinel_for<std::ranges::sentinel_t<B0>, std::ranges::iterator_t<B0>> && std::sized_sentinel_for<std::ranges::sentinel_t<B1>, std::ranges::iterator_t<B1>> { return -(rhs - lhs); } friend inline constexpr std::common_reference_t< std::ranges::range_rvalue_reference_t<B0>, std::ranges::range_rvalue_reference_t<B1> > iter_move(const iterator& itr) noexcept(NO_EXCEPT) { if(itr._block == 0) return std::ranges::iter_move(itr._c0); if(itr._block == 1) return std::ranges::iter_move(itr._c1); assert(false); } friend inline constexpr void iter_swap(const iterator& lhs, const iterator& rhs) noexcept(NO_EXCEPT) requires std::indirectly_swappable<std::ranges::iterator_t<B0>> && std::indirectly_swappable<std::ranges::iterator_t<B1>> && std::indirectly_swappable<std::ranges::iterator_t<B0>, std::ranges::iterator_t<B1>> { if(lhs._block == 0 && rhs._block == 0) std::ranges::iter_swap(lhs._c0, rhs._c0); if(lhs._block == 0 && rhs._block == 1) std::ranges::iter_swap(lhs._c0, rhs._c1); if(lhs._block == 1 && rhs._block == 0) std::ranges::iter_swap(lhs._c1, rhs._c0); if(lhs._block == 1 && rhs._block == 1) std::ranges::iter_swap(lhs._c1, rhs._c1); assert(false); } }; } // namespace view_impl } // namespace internal template<class...> struct concat_view; template<class T> struct concat_view<T> : std::views::all_t<T> { using std::views::all_t<T>::all_t; }; template<class T0, class T1> struct concat_view<T0, T1> : internal::view_impl::concat_view<std::views::all_t<T0>, std::views::all_t<T1>> { explicit concat_view(T0&& v0, T1&& v1) noexcept(NO_EXCEPT) : internal::view_impl::concat_view<std::views::all_t<T0>, std::views::all_t<T1>>(std::forward<T0>(v0), std::forward<T1>(v1)) {} }; template<class T0, class T1, class... Ts> struct concat_view<T0, T1, Ts...> : concat_view<concat_view<T0, T1>, Ts...> { explicit concat_view(T0&& v0, T1&& v1, Ts&&... vs) noexcept(NO_EXCEPT) : concat_view<concat_view<T0, T1>, Ts...>( concat_view<T0, T1>(std::forward<T0>(v0), std::forward<T1>(v1)), std::forward<Ts>(vs)... ) {} }; namespace views { namespace internal { template<class... Ts> concept can_concat_view = requires { concat_view<Ts...>(std::declval<Ts>()...); }; } // namespace internal struct Concat { template<class... Ts> requires (sizeof...(Ts) == 0 || internal::can_concat_view<Ts...>) inline constexpr auto operator() [[nodiscard]] (Ts&&... vs) const { if constexpr(sizeof...(Ts) == 0) return std::views::empty<std::nullptr_t>; else return concat_view<std::views::all_t<Ts>...>(std::forward<Ts>(vs)...); } }; inline constexpr Concat concat; } // namespace views } // namespace uni. namespace std::ranges { template<class... Views> inline constexpr bool enable_borrowed_range<uni::concat_view<Views...>> = (enable_borrowed_range<Views> && ...); } #line 35 "iterable/operation.hpp" namespace uni { template<std::ranges::input_range R0, std::ranges::input_range R1> requires std::constructible_from< R0, std::common_type_t<std::ranges::range_size_t<R0>,std::ranges::range_size_t<R1>> > R0 concat(R0&& r0, R1&& r1) noexcept(NO_EXCEPT) { R0 res(std::ranges::size(r0) + std::ranges::size(r1)); std::ranges::copy(r0, std::ranges::begin(res)); std::ranges::copy(r1, std::ranges::next(std::ranges::begin(res), std::ranges::size(r0))); return res; } template<std::ranges::input_range R, std::ranges::input_range... Rs> R concat(R&& range, Rs&&... tails) noexcept(NO_EXCEPT) { return uni::concat(range, uni::concat(tails...)); } template<std::ranges::input_range R> requires requires(R r) { r.erase(std::ranges::unique(ALL(r)), std::ranges::end(r)); } inline auto unique(R range) noexcept(NO_EXCEPT) { std::ranges::sort(range); range.erase(std::ranges::unique(ALL(range)), std::ranges::end(range)); return range; } template< std::input_iterator I, std::sentinel_for<I> S, class T = std::iter_value_t<I> > T mex(I first, S last, const T& base = T()) noexcept(NO_EXCEPT) { std::vector<T> val(first, last); std::ranges::sort(val); { auto range = std::ranges::unique(val); val.erase(ALL(range)); } val.erase(val.begin(), std::ranges::lower_bound(val, base)); T i = 0; while(i < std::ranges::ssize(val) && val[i] == i + base) ++i; return T{i} + base; } template<std::ranges::input_range R> auto mex(R&& range, const std::ranges::range_value_t<R>& base = std::ranges::range_value_t<R>()) noexcept(NO_EXCEPT) { return mex(ALL(range), base); } template<class T> auto mex(const std::initializer_list<T> v, const T& base = T()) noexcept(NO_EXCEPT) { return mex(ALL(v), base); } template<std::input_iterator I, std::sentinel_for<I> S, class T> inline constexpr auto gcd(I first, S last) noexcept(NO_EXCEPT) { T res = T{0}; for(auto itr=first; itr!=last; ++itr) res = std::gcd(res, *itr); return res; } template<std::input_iterator I, std::sentinel_for<I> S, class T> inline constexpr auto lcm(I first, S last) noexcept(NO_EXCEPT) { T res = T{1}; for(auto itr=first; itr!=last; ++itr) res = std::lcm(res, *itr); return res; } template<std::ranges::input_range R, class T = std::ranges::range_value_t<R>> auto mex(R&& range, const T& base) noexcept(NO_EXCEPT) { return mex(ALL(range), base); } template<std::ranges::input_range R> auto gcd(R&& range) noexcept(NO_EXCEPT) { return gcd(ALL(range)); } template<std::ranges::input_range R> auto lcm(R&& range) noexcept(NO_EXCEPT) { return lcm(ALL(range)); } template<class R, std::input_iterator I, std::sentinel_for<I> S, class D> requires requires (R r, I itr) { r.emplace_back(itr, itr); } auto split(I first, S last, const D& delim = ' ') noexcept(NO_EXCEPT) { R res; for(auto itr=first, fnd=first; ; itr=std::ranges::next(fnd)) { fnd = std::find(itr, last, delim); res.emplace_back(itr, fnd); if(fnd == last) break; } return res; } template<class R, std::ranges::input_range V, class D> requires (!std::ranges::input_range<D>) auto split(V&& v, D&& d) noexcept(NO_EXCEPT) { return split<R>(ALL(v), d); } template<class R, std::ranges::input_range V, std::ranges::input_range Ds> auto split(V&& v, Ds&& ds) noexcept(NO_EXCEPT) { R res = { v }; ITR(d, ds) { R tmp; ITR(p, res) tmp = concat(tmp, split<R>(p, d)); res = std::move(tmp); } return res; } template<class R, std::ranges::input_range V, class T> auto split(V&& v, const std::initializer_list<T> ds) noexcept(NO_EXCEPT){ return split<R,V>(v, std::vector<T>(ALL(ds))); } template<std::ranges::sized_range Source, std::ranges::sized_range Qeury> auto find(Source&& source, Qeury&& query) noexcept(NO_EXCEPT) { z_array z_arr(views::concat(query, source)); const auto query_size = std::ranges::ssize(query); vector<std::ranges::iterator_t<Source>> res; { auto itr = std::ranges::begin(source); REP(i, query_size, std::ranges::size(z_arr)) { if(z_arr[i] >= query_size) res.push_back(itr); ++itr; } } return res; } template< replacement_policy POLICY, std::ranges::sized_range R, std::ranges::sized_range From, std::ranges::sized_range To > auto replaced(R&& source, From&& from, To&& to) noexcept(NO_EXCEPT) { std::remove_cvref_t<R> res; if constexpr(POLICY == replacement_policy::insert_sync) { const auto found = find(source, from); auto itr = std::ranges::begin(source); ITRR(fn, found) { std::ranges::copy(itr, fn, std::back_inserter(res)); std::ranges::copy(ALL(to), std::back_inserter(res)); itr = std::ranges::next(fn, std::ranges::size(from)); } std::ranges::copy(itr, std::ranges::end(source), std::back_inserter(res)); } else { res = source; res.resize(std::ranges::size(source) + std::ranges::size(to)); const auto found = find(res, from); auto prev = std::ranges::begin(res); ITRR(fn, found) { if constexpr(POLICY == replacement_policy::overwrite_sync) { if(prev <= fn) prev = std::ranges::copy(to, fn); } else { std::ranges::copy(to, fn); } } res.resize(std::ranges::size(source)); } return res; } template< std::ranges::sized_range R, std::ranges::sized_range From, std::ranges::sized_range To > inline auto replaced(R&& source, From&& from, To&& to) noexcept(NO_EXCEPT) { return replaced<replacement_policy::insert_sync, R, From, To>(std::forward<R>(source), std::forward<From>(from), std::forward<To>(to)); } template<alignment ALIGNMENT, internal::resizable_range R, class T = std::ranges::range_value_t<R>> auto align(R&& source, const internal::size_t size, const T& v = T()) noexcept(NO_EXCEPT) { if(std::ssize(source) >= size) return source; if(ALIGNMENT == alignment::left) { R left, right; left = source; right.resize(size - std::size(left), v); return R(ALL(uni::views::concat(left, right))); } if(ALIGNMENT == alignment::center) { R left, center, right; center = source; left.resize((size - std::size(center)) / 2, v); right.resize(size - std::size(center) - std::size(left), v); return R(ALL(uni::views::concat(left, center, right))); } if(ALIGNMENT == alignment::right) { R left, right; right = source; left.resize(size - std::size(right), v); return R(ALL(uni::views::concat(left, right))); } assert(false); } template<internal::resizable_range R, class T = std::ranges::range_value_t<R>> auto ljust(R&& source, const internal::size_t size, const T& v = T()) noexcept(NO_EXCEPT) { return align<alignment::left>(source, size, v); } template<internal::resizable_range R, class T = std::ranges::range_value_t<R>> auto cjust(R&& source, const internal::size_t size, const T& v = T()) noexcept(NO_EXCEPT) { return align<alignment::center>(source, size, v); } template<internal::resizable_range R, class T = std::ranges::range_value_t<R>> auto rjust(R&& source, const internal::size_t size, const T& v = T()) noexcept(NO_EXCEPT) { return align<alignment::right>(source, size, v); } template< class Res, std::ranges::random_access_range Target, std::ranges::forward_range Order > requires std::ranges::output_range<Res, std::ranges::range_value_t<Target>> Res ordered_by(Target&& target, Order&& order) noexcept(NO_EXCEPT) { const auto target_size = std::ranges::ssize(target); const auto order_size = std::ranges::ssize(order); Res res(order_size); { auto res_itr = std::ranges::begin(res); auto order_itr = std::ranges::begin(order); const auto order_end = std::ranges::end(std::forward<Order>(order)); for(; order_itr != order_end; ++res_itr, ++order_itr) { if constexpr(std::signed_integral<std::ranges::range_value_t<Order>>) assert(0 <= *order_itr); assert(*order_itr < target_size); *res_itr = target[*order_itr]; } } return res; } template< std::ranges::random_access_range Target, std::ranges::forward_range Order > auto ordered_by(Target&& target, Order&& order) noexcept(NO_EXCEPT) { return ordered_by<std::remove_cvref_t<Target>, Target, Order>(std::forward<Target>(target), std::forward<Order>(order)); } template<std::ranges::input_range Target, std::ranges::input_range Source> requires std::equality_comparable_with<std::ranges::range_value_t<Target>, std::ranges::range_value_t<Source>> auto is_subsequence_of(Target&& target, Source&& source) noexcept(NO_EXCEPT) { auto target_itr = std::ranges::begin(source); auto source_itr = std::ranges::begin(source); const auto target_end = std::ranges::end(source); const auto source_end = std::ranges::end(source); for(; source_itr != source_end; ++source_itr) { if(*target_itr == *source_itr) ++target_itr; } return target_itr == target_end; } template<std::ranges::input_range Target, std::ranges::input_range Source> requires std::equality_comparable_with<std::ranges::range_value_t<Target>, std::ranges::range_value_t<Source>> auto is_continuous_subsequence_of(Target&& target, Source&& source) noexcept(NO_EXCEPT) { auto found = find(source, target); return found.size() > 0; } } // namespace uni #line 31 "numeric/arithmetic.hpp" namespace uni { template<class T> inline constexpr T div_floor(const T& x, const T& d) noexcept(NO_EXCEPT) { if constexpr(std::is_integral_v<T>) { return x / d - (x % d && ((x < 0) ^ (d < 0))); } else { return std::floor(x / d); } } template<class T> inline constexpr T div_ceil(const T& x, const T& d) noexcept(NO_EXCEPT) { if constexpr(std::is_integral_v<T>) { return div_floor(x + d - 1, d); } else { return std::ceil(x / d); } } template<class T> inline constexpr T div_round(const T& x, const T& d) noexcept(NO_EXCEPT) { if constexpr(std::is_integral_v<T>) { return div_round<ld>(x, d); } else { return std::round(x / d); } } template<class T> inline constexpr std::make_signed_t<T> to_signed(const T& x) noexcept(NO_EXCEPT) { return std::bit_cast<std::make_signed_t<T>>(x); } template<class T> inline constexpr std::make_unsigned_t<T> to_unsigned(const T& x) noexcept(NO_EXCEPT) { return std::bit_cast<std::make_unsigned_t<T>>(x); } namespace internal { template<class T> inline constexpr auto perm(const T& n, const T& r) noexcept(NO_EXCEPT) { T res = 1; REP(i, r) res *= n - i; return res; } template<class T> inline constexpr auto comb(const T& n, T r) noexcept(NO_EXCEPT) { if(n < 2 * r) r = n - r; T p = 1, q = 1; REP(i, r) p *= n - i, q *= r - i; return p / q; } } // namespace internal template<class T0, std::common_with<T0> T1> inline constexpr auto perm(const T0& n, const T1& r) noexcept(NO_EXCEPT) { assert(n >= 0), assert(r >= 0); using T = std::common_type_t<T0, T1>; if(n < r) return static_cast<T>(0); return internal::perm<T>(n, r); } template<class T0, std::common_with<T0> T1> inline constexpr auto comb(const T0& n, const T1& r) noexcept(NO_EXCEPT) { assert(n >= 0), assert(r >= 0); using T = std::common_type_t<T0, T1>; if(n < r) return static_cast<T>(0); if(n == r) return static_cast<T>(1); return internal::comb<T>(n, r); } template<class T, class U, std::invocable<T, T> F = std::multiplies<>> constexpr T pow(T x, U n, F mul = F(), T one = static_cast<T>(1)) noexcept(NO_EXCEPT) { if(n == 0) return one; if(n == 1 || x == one) return x; T res = one; while(true) { if(n & 1) res = mul(res, x); x = mul(x, x); if(n == 0) return res; n >>= 1; } assert(false); } using atcoder::pow_mod; using atcoder::inv_mod; using atcoder::crt; template<class T> inline constexpr T sign(const T& x) noexcept(NO_EXCEPT) { if(x == 0) return 0; return (x > 0) ? 1 : -1; } template<class T, T FROM_MIN, T FROM_MAX, T TO_MIN, T TO_MAX> inline constexpr T mapping(const T x) { return (x - FROM_MIN) * (TO_MAX - TO_MIN) / (FROM_MAX - FROM_MIN) + TO_MIN; } template<class T> inline constexpr T mapping(const T x, const T from_min, const T from_max, const T to_min, const T to_max) { return (x - from_min) * (to_max - to_min) / (from_max - from_min) + to_min; } template<class... Args> inline constexpr std::common_type_t<Args...> min(const Args&... args) noexcept(NO_EXCEPT) { return std::min({ static_cast<std::common_type_t<Args...>>(args)... }); } template<class... Args> inline constexpr std::common_type_t<Args...> max(const Args&... args) noexcept(NO_EXCEPT) { return std::max({ static_cast<std::common_type_t<Args...>>(args)... }); } template<class T> inline constexpr T gcd(const std::initializer_list<T> args) noexcept(NO_EXCEPT) { return gcd(ALL(args)); } template<class... Args> inline constexpr std::common_type_t<Args...> gcd(const Args&... args) noexcept(NO_EXCEPT) { return gcd({ static_cast<std::common_type_t<Args...>>(args)... }); } template<class T> inline constexpr T lcm(const std::initializer_list<T> args) noexcept(NO_EXCEPT) { return lcm(ALL(args)); } template<class... Args> inline constexpr std::common_type_t<Args...> lcm(const Args&... args) noexcept(NO_EXCEPT) { return lcm({ static_cast<std::common_type_t<Args...>>(args)... }); } template<std::integral T0, std::integral T1> inline constexpr std::optional<std::common_type_t<T0, T1>> add_overflow(const T0& a, const T1& b) noexcept(NO_EXCEPT) { std::common_type_t<T0, T1> res; if(__builtin_add_overflow(a, b, &res)) return {}; return res; } template<std::integral T0, std::integral T1> inline constexpr std::optional<std::common_type_t<T0, T1>> sub_overflow(const T0& a, const T1& b) noexcept(NO_EXCEPT) { std::common_type_t<T0, T1> res; if(__builtin_sub_overflow(a, b, &res)) return {}; return res; } template<std::integral T0, std::integral T1> inline constexpr std::optional<std::common_type_t<T0, T1>> mul_overflow(const T0& a, const T1& b) noexcept(NO_EXCEPT) { std::common_type_t<T0, T1> res; if(__builtin_mul_overflow(a, b, &res)) return {}; return res; } template<std::integral T0, std::integral T1, std::integral Limit> inline auto add_clamp(const T0 x, const T1 y, const Limit inf, const Limit sup) noexcept(NO_EXCEPT) { using Common = std::common_type_t<T0, T1, Limit>; const auto res = add_overflow<Common>(x, y); if(!res) { if(x < 0 && y < 0) return inf; if(x > 0 && y > 0) return sup; assert(false); } return std::clamp<Common>(*res, inf, sup); } template<std::integral T0, std::integral T1, std::integral Limit> inline auto sub_clamp(const T0 x, const T1 y, const Limit inf, const Limit sup) noexcept(NO_EXCEPT) { using Common = std::common_type_t<T0, T1, Limit>; const auto res = sub_overflow<Common>(x, y); if(!res) { if(x < 0 && y > 0) return inf; if(x > 0 && y < 0) return sup; assert(false); } return std::clamp<Common>(*res, inf, sup); } template<std::integral T0, std::integral T1, std::integral Limit> inline auto mul_clamp(const T0 x, const T1 y, const Limit inf, const Limit sup) noexcept(NO_EXCEPT) { using Common = std::common_type_t<T0, T1, Limit>; const auto res = mul_overflow<Common>(x, y); if(!res) { if((x > 0) xor (y > 0)) return inf; else return sup; assert(false); } return std::clamp<Common>(*res, inf, sup); } template<class T> inline constexpr T sqrt_floor(const T x) noexcept(NO_EXCEPT) { return static_cast<T>(std::sqrt(static_cast<long double>(x))); } template<class T> inline constexpr T sqrt_ceil(const T x) noexcept(NO_EXCEPT) { T res = sqrt_floor(x); if constexpr(std::is_floating_point_v<T>) { while(res * res < x) res += 1; } else { while(mul_overflow(res, res).value_or(std::numeric_limits<T>::max()) < x) ++res; } return res; } template<class T, std::integral K> inline constexpr T kth_root_floor(T x, const K k) noexcept(NO_EXCEPT) { assert(x >= 0); if(std::signed_integral<K>) assert(k > 0); if(x <= 1 or k == 1) return x; constexpr auto DIGITS = std::numeric_limits<T>::digits; if(k >= DIGITS) return T{1}; if(k == 2) return sqrt_floor(x); constexpr auto MAX = std::numeric_limits<T>::max(); if(x == MAX) --x; auto pow = [&](T t, i64 p) { if(p == 0) return T{1}; T res = 1; while(p) { if(p & 1) { res = mul_overflow(res, t).value_or(MAX); } t = mul_overflow(t, t).value_or(MAX); p >>= 1; } return res; }; auto res = static_cast<T>(std::pow(x, std::nextafter(1 / static_cast<double>(k), 0))); while(pow(res + 1, k) <= x) ++res; return res; } template<std::integral T> T inline constexpr extended_gcd(const T& a, const T& b, T& x, T& y) noexcept { if(b == 0) { x = 1; y = 0; return a; } const T d = extended_gcd(b, a%b, y, x); y -= a / b * x; return d; }; template<std::integral T> std::pair<T, spair<T>> inline constexpr extended_gcd(const T& a, const T& b) noexcept { T x, y; const T d = extended_gcd(a, b, x, y); return { d, spair<T>{ x, y } }; }; template<std::integral T> std::optional<spair<T>> inline constexpr bezout_equation(const T& a, const T& b, const T& c) noexcept { if(a == 0) { if(b == 0) { if(c == 0) return spair<T>{ 0, 0 }; else { }; } if(c % b == 0) return spair<T>{ 0, c / b }; return {}; } if(b == 0) { const auto ans = bezout_equation(b, a, c); if(ans.has_value()) return swapped(ans.value()); return {}; } T x, y; const T gcd = extended_gcd(a, b, x, y); if(c % gcd != 0) return {}; const T p = c / gcd; return spair<T>{ x * p, y * p }; }; } // namespace uni #line 18 "numeric/bit.hpp" namespace uni { template<std::unsigned_integral T> constexpr T multiply_high(const T x, const T y) noexcept(NO_EXCEPT) { constexpr int digits = std::numeric_limits<T>::digits; if constexpr(digits <= 16) { return static_cast<T>((static_cast<u32>(x) * static_cast<u32>(y)) >> digits); } else if constexpr(digits <= 32) { return static_cast<T>((static_cast<u64>(x) * static_cast<u64>(y)) >> digits); } else if constexpr(digits <= 64) { return static_cast<T>((static_cast<u128>(x) * static_cast<u128>(y)) >> digits); } else { constexpr int h_digits = digits / 2; constexpr T mask = (T{ 1 } << h_digits) - 1; const T xh = x >> h_digits, yh = y >> h_digits; const T xl = x & mask, yl = y & mask; const T ph = xh * yh, pl = xl * yl; return (((pl >> h_digits) + (xh + xl) * (yh + yl) - (ph + pl)) >> h_digits) + ph; } } template<std::unsigned_integral T> inline constexpr int highest_bit_pos(const T v) noexcept(NO_EXCEPT) { return (int)std::bit_width(v) - 1; // cast to int for GCC12 } template<std::unsigned_integral T> inline constexpr int lowest_bit_pos(const T v) noexcept(NO_EXCEPT) { if(v == 0) return -1; return std::countr_zero(v); } template<std::unsigned_integral T, std::integral I = int> __attribute__((target("bmi2"))) inline constexpr T clear_higher_bits(const T v, const I p) { if constexpr(std::signed_integral<I>) assert(0 <= p); constexpr int DIGITS = std::numeric_limits<T>::digits; assert(p <= DIGITS); if constexpr(DIGITS <= 32) return _bzhi_u32(v, static_cast<u32>(p)); if constexpr(DIGITS <= 64) return _bzhi_u64(v, static_cast<u64>(p)); else { static_assert(DIGITS <= 128); constexpr std::uint64_t MAX64 = std::numeric_limits<std::uint64_t>::max(); const std::uint64_t high = v >> 64; const std::uint64_t low = v & MAX64; if(p < 64) return _bzhi_u64(low, p); return low | (T{_bzhi_u64(high, p - 64)} << 64); } } template<std::unsigned_integral T, std::integral I = int> constexpr T shiftl(const T, const I = 1); template<std::unsigned_integral T, std::integral I = int> constexpr T shiftr(const T, const I = 1); template<std::unsigned_integral T, std::integral I> constexpr T shiftl(const T x, const I n) { constexpr int DIGITS = std::numeric_limits<T>::digits; if constexpr(std::signed_integral<I>) { if(n < 0) return shiftr(x, -n); } if(n >= DIGITS) return 0; return x << n; } template<std::unsigned_integral T, std::integral I> constexpr T shiftr(const T x, const I n) { constexpr int DIGITS = std::numeric_limits<T>::digits; if constexpr(std::signed_integral<I>) { if(n < 0) return shiftl(x, -n); } if(n >= DIGITS) return 0; return x >> n; } template<std::unsigned_integral T, std::integral I = int> inline constexpr bool bit(const T x, const I p) { if constexpr(std::signed_integral<I>) assert(0 <= p); assert(p < std::numeric_limits<T>::digits); return shiftr(x, p) & T{1}; } template<std::unsigned_integral T, std::integral I = int> inline constexpr auto reset_bit(const T x, const I p) { if constexpr(std::signed_integral<I>) assert(0 <= p); assert(p < std::numeric_limits<T>::digits); return x & ~(T{1} << p); } template<std::unsigned_integral T, std::integral I = int> inline constexpr auto set_bit(const T x, const I p, const bool bit = true) { if constexpr(std::signed_integral<I>) assert(0 <= p); assert(p < std::numeric_limits<T>::digits); if(!bit) return reset_bit(x, p); return x | (T{1} << p); } template<std::unsigned_integral T, std::integral I = int> inline constexpr T lower_bits(const T x, const I digits) { if constexpr(std::signed_integral<I>) assert(0 <= digits); assert(digits <= std::numeric_limits<T>::digits); return x & (uni::shiftl(x, digits) - 1); } // Thanks to: https://noshi91.github.io/Library/other/select64.cpp constexpr int select64(const u64 x0, u32 k) { const u64 x1 = (x0 & UINT64_C(0x5555555555555555)) + (x0 >> 1 & UINT64_C(0x5555555555555555)); const u64 x2 = (x1 & UINT64_C(0x3333333333333333)) + (x1 >> 2 & UINT64_C(0x3333333333333333)); const u64 x3 = (x2 & UINT64_C(0x0F0F0F0F0F0F0F0F)) + (x2 >> 4 & UINT64_C(0x0F0F0F0F0F0F0F0F)); const u64 x4 = (x3 & UINT64_C(0x00FF00FF00FF00FF)) + (x3 >> 8 & UINT64_C(0x00FF00FF00FF00FF)); const u64 x5 = (x4 & UINT64_C(0x0000FFFF0000FFFF)) + (x4 >> 16 & UINT64_C(0x0000FFFF0000FFFF)); int res = 0; u32 t; t = x5 & 0xFFFFFFFF; if(t <= k) k -= t, res += 32; t = x4 >> res & 0xFFFF; if(t <= k) k -= t, res += 16; t = x3 >> res & 0xFF; if(t <= k) k -= t, res += 8; t = x2 >> res & 0xF; if(t <= k) k -= t, res += 4; t = x1 >> res & 0x3; if(t <= k) k -= t, res += 2; t = x0 >> res & 0x1; if(t <= k) k -= t, res += 1; return res; } namespace internal { template<std::unsigned_integral T> constexpr T binary_gcd(T a, T b) noexcept(NO_EXCEPT) { if(!a || !b) return a | b; T t, s = std::countr_zero(a | b); a >>= std::countr_zero(a); do { b >>= std::countr_zero(b); if(a > b) t = a, a = b, b = t; b -= a; } while(b); return a << s; } template<std::signed_integral T> inline constexpr T binary_gcd(const T a, const T b) noexcept(NO_EXCEPT) { return binary_gcd(a < 0 ? -a : a, b < 0 ? -b : b); } } // namespace internal template<std::integral T0, std::integral T1> inline constexpr auto binary_gcd(T0 v0, T1 v1) noexcept(NO_EXCEPT) { using common_type = std::common_type_t<T0, T1>; return internal::binary_gcd(static_cast<common_type>(v0), static_cast<common_type>(v1)); } template<std::unsigned_integral T, std::unsigned_integral S> inline constexpr bool is_subset_of(T target, S superset) noexcept(NO_EXCEPT) { return (target & ~superset) == 0; } template<std::unsigned_integral T, std::unsigned_integral S> inline constexpr bool is_superset_of(T target, S subset) noexcept(NO_EXCEPT) { return (~target & subset) == 0; } template<std::unsigned_integral S0, std::unsigned_integral S1> inline constexpr auto comapre_as_bitset(S0 s0, S1 s1) noexcept(NO_EXCEPT) { if(s0 == s1) return std::partial_ordering::equivalent; if(is_subset_of(s0, s1)) return std::partial_ordering::less; if(is_superset_of(s0, s1)) return std::partial_ordering::greater; return std::partial_ordering::unordered; } } // namespace uni #line 2 "algebraic/internal/concepts.hpp" #line 6 "algebraic/internal/concepts.hpp" #line 9 "algebraic/internal/concepts.hpp" #line 2 "algebraic/base.hpp" #line 6 "algebraic/base.hpp" #line 10 "algebraic/base.hpp" namespace uni { namespace algebraic { template<class Derived> struct scalar_multipliable { struct identity { template<std::integral Scalar> friend inline Derived operator*(const Scalar, const Derived& val) noexcept(NO_EXCEPT) { return val; } }; struct automatic { template<std::integral Scalar> friend inline Derived operator*(const Scalar k, const Derived& val) noexcept(NO_EXCEPT) { return uni::pow<Derived, Scalar, std::plus<Derived>>(val, k, {}, {}); } }; }; template<class T> struct base { using value_type = T; protected: value_type _value; public: template<class... Args> requires std::constructible_from<value_type, Args...> base(Args&&... args) noexcept(NO_EXCEPT) : _value(std::forward<Args>(args)...) {} inline explicit operator value_type() const noexcept(NO_EXCEPT) { return this->_value; } inline auto val() const noexcept(NO_EXCEPT) { return this->_value; }; inline const value_type* operator->() const noexcept(NO_EXCEPT) { return &this->_value; }; inline value_type* operator->() noexcept(NO_EXCEPT) { return &this->_value; }; friend inline auto operator<=>(const base& lhs, const base& rhs) noexcept(NO_EXCEPT) { return lhs._value <=> rhs._value; }; friend inline bool operator==(const base& lhs, const base& rhs) noexcept(NO_EXCEPT) { return lhs._value == rhs._value; } }; struct associative {}; struct commutative {}; } // namespace algebraic } // namespace uni #line 11 "algebraic/internal/concepts.hpp" namespace uni { namespace algebraic { namespace internal { template<class T> concept magma = uni::internal::addable<T> && requires { typename T::value_type; }; template<class T> concept associative = std::is_base_of_v<algebraic::associative, T>; template<class T> concept commutative = std::is_base_of_v<algebraic::commutative, T>; template<class T> concept invertible = uni::internal::unary_subtractable<T>; template<class T> concept semigroup = magma<T> && associative<T>; template<class T> concept monoid = semigroup<T> && std::default_initializable<T>; template<class T> concept group = monoid<T> && invertible<T>; } // namespace internal } // namespace algebraic } // namespace uni #line 2 "action/base.hpp" #line 6 "action/base.hpp" #line 2 "internal/dummy.hpp" namespace uni { namespace internal { struct dummy {}; } // namespace internal } // namespace uni #line 11 "action/base.hpp" #line 13 "action/base.hpp" namespace uni { namespace actions { template<class operation = uni::internal::dummy> requires algebraic::internal::monoid<operation> || std::same_as<operation, uni::internal::dummy> struct base { static operation power(const operation& x, const uni::internal::size_t) noexcept(NO_EXCEPT) { return x; } }; namespace internal { template<class T> concept operatable_action = algebraic::internal::magma<typename T::operand>; template<class T> concept effective_action = algebraic::internal::magma<typename T::operation> && requires (const typename T::operation& f, const uni::internal::size_t length) { { T::power(f, length) } -> std::same_as<typename T::operation>; }; template<class T> concept operand_only_action = operatable_action<T> && (!effective_action<T>); template<class T> concept effect_only_action = effective_action<T> && (!operatable_action<T>); template<class T> concept full_action = operatable_action<T> && effective_action<T> && requires (typename T::operation f, typename T::operand v) { { T::mapping(f, v) } -> std::same_as<typename T::operand>; }; template<class T> concept action = operatable_action<T> || effective_action<T>; } // namespace internal } // namespace actions } // namespace uni #line 25 "data_structure/segment_tree.hpp" namespace uni { namespace internal { namespace segment_tree_impl { // Thanks to: atcoder::segtree template<algebraic::internal::monoid Monoid> struct core { using size_type = internal::size_t; using operand = Monoid; protected: size_type _n = 0, _size = 0, _depth = 0; std::valarray<operand> _data; inline void _pull(const size_type k) noexcept(NO_EXCEPT) { this->_data[k] = this->_data[k << 1] + this->_data[k << 1 | 1]; } public: core() noexcept = default; explicit core(const size_type n) noexcept(NO_EXCEPT) : _n(n), _size(std::bit_ceil(uni::to_unsigned(n))), _depth(std::countr_zero(uni::to_unsigned(this->_size))), _data(this->_size << 1) {} inline size_type size() const noexcept(NO_EXCEPT) { return this->_n; } inline size_type allocated() const noexcept(NO_EXCEPT) { return this->_values.size(); } inline size_type depth() const noexcept(NO_EXCEPT) { return this->_depth; } inline operand fold_all() const noexcept(NO_EXCEPT) { return this->_data[1]; } template<std::input_iterator I, std::sentinel_for<I> S> inline void assign(I first, S last) noexcept(NO_EXCEPT) { if constexpr(std::sized_sentinel_for<S, I>) { assert(std::ranges::distance(first, last) == this->_n); } { size_type p = 0; for(auto itr=first; itr!=last; ++itr, ++p) this->_data[this->_size + p] = static_cast<operand>(*itr); } REPD(p, 1, this->_size) this->_pull(p); } inline void fill(const operand& v = operand()) noexcept(NO_EXCEPT) { REP(p, this->_n) this->_data[this->_size + p] = v; REPD(p, 1, this->_size) this->_pull(p); } inline void add(size_type p, const operand& x) noexcept(NO_EXCEPT) { this->set(p, this->_data[p + this->_size] + x); } inline void set(size_type p, const operand& x) noexcept(NO_EXCEPT) { p += this->_size; this->_data[p] = x; FOR(i, 1, this->_depth) this->_pull(p >> i); } inline operand get(size_type p) const noexcept(NO_EXCEPT) { return this->_data[p + this->_size]; } inline operand fold(size_type l, size_type r) const noexcept(NO_EXCEPT) { operand sml, smr; l += this->_size; r += this->_size; while(l < r) { if(l & 1) sml = sml + this->_data[l++]; if(r & 1) smr = this->_data[--r] + smr; l >>= 1; r >>= 1; } return sml + smr; } template<class F> inline size_type max_right(size_type l, F&& f) const noexcept(NO_EXCEPT) { assert(0 <= l && l <= this->_n); assert(f(operand{})); if(l == this->_n) return this->_n; l += this->_size; operand acc; do { while((l & 1) == 0) l >>= 1; if(!f(acc + this->_data[l])) { while(l < this->_size) { l <<= 1; if(f(acc + this->_data[l])) { acc = acc + this->_data[l]; ++l; } } return l - this->_size; } acc = acc + this->_data[l]; ++l; } while((l & -l) != l); return this->_n; } template<class F> inline size_type min_left(size_type r, F&& f) const noexcept(NO_EXCEPT) { assert(0 <= r && r <= this->_n); assert(f(operand{})); if (r == 0) return 0; r += this->_size; operand acc; do { --r; while(r > 1 && (r & 1)) r >>= 1; if(!f(this->_data[r] + acc)) { while(r < this->_size) { r = (r << 1 | 1); if(f(this->_data[r] + acc)) { acc = this->_data[r] + acc; --r; } } return r + 1 - this->_size; } acc = this->_data[r] + acc; } while((r & -r) != r); return 0; } }; } // namespace segment_tree_impl } // namespace internal template<class T> struct segment_tree : internal::unconstructible {}; template<algebraic::internal::monoid Monoid> struct segment_tree<Monoid> { private: using core = typename internal::segment_tree_impl::core<Monoid>; core _impl; public: using value_type = Monoid; using size_type = typename core::size_type; private: inline auto _positivize_index(const size_type p) const noexcept(NO_EXCEPT) { return p < 0 ? this->_impl.size() + p : p; } public: segment_tree() noexcept(NO_EXCEPT) : _impl() {}; explicit segment_tree(const size_type n, const value_type& v = value_type()) noexcept(NO_EXCEPT) : _impl(n) { this->_impl.fill(v); } template<std::convertible_to<value_type> T> segment_tree(const std::initializer_list<T>& init_list) noexcept(NO_EXCEPT) : segment_tree(ALL(init_list)) {} template<std::input_iterator I, std::sized_sentinel_for<I> S> segment_tree(I first, S last) noexcept(NO_EXCEPT) : segment_tree(static_cast<size_type>(std::ranges::distance(first, last))) { this->assign(first, last); } template<std::ranges::input_range R> explicit segment_tree(R&& range) noexcept(NO_EXCEPT) : segment_tree(ALL(range)) {} inline auto size() const noexcept(NO_EXCEPT) { return this->_impl.size(); } inline auto allocated() const noexcept(NO_EXCEPT) { return this->_impl.allocated(); } inline auto depth() const noexcept(NO_EXCEPT) { return this->_impl.depth(); } template<std::convertible_to<value_type> T> inline auto& assign(const std::initializer_list<T>& init_list) noexcept(NO_EXCEPT) { return this->assign(ALL(init_list)); } template<std::input_iterator I, std::sentinel_for<I> S> inline auto& assign(I first, S last) noexcept(NO_EXCEPT) { this->_impl.assign(first, last); return *this; } template<std::ranges::input_range R> inline auto& assign(R&& range) noexcept(NO_EXCEPT) { return this->assign(ALL(range)); } inline auto& fill(const value_type& v = value_type()) noexcept(NO_EXCEPT) { this->_impl.fill(v); return *this; } inline bool empty() const noexcept(NO_EXCEPT) { return this->_impl.size() == 0; } struct point_reference : internal::point_reference<segment_tree> { point_reference(segment_tree *const super, const size_type p) noexcept(NO_EXCEPT) : internal::point_reference<segment_tree>(super, super->_positivize_index(p)) { assert(0 <= this->_pos && this->_pos < this->_super->size()); } operator value_type() const noexcept(NO_EXCEPT) { return this->_super->get(this->_pos); } auto val() const noexcept(NO_EXCEPT) { return this->_super->get(this->_pos); } inline auto& operator=(const value_type& v) noexcept(NO_EXCEPT) { this->_super->set(this->_pos, v); return *this; } inline auto& operator+=(const value_type& v) noexcept(NO_EXCEPT) { this->_super->add(this->_pos, v); return *this; } }; struct range_reference : internal::range_reference<segment_tree> { range_reference(segment_tree *const super, const size_type l, const size_type r) noexcept(NO_EXCEPT) : internal::range_reference<segment_tree>(super, super->_positivize_index(l), super->_positivize_index(r)) { assert(0 <= this->_begin && this->_begin <= this->_end && this->_end <= this->_super->size()); } inline auto fold() noexcept(NO_EXCEPT) { if(this->_begin == 0 and this->_end == this->_super->size()) return this->_super->fold(); return this->_super->fold(this->_begin, this->_end); } }; inline auto& add(const size_type p, const value_type& x) noexcept(NO_EXCEPT) { assert(0 <= p && p < this->_impl.size()); this->_impl.add(p, x); return *this; } inline auto& set(const size_type p, const value_type& x) noexcept(NO_EXCEPT) { assert(0 <= p && p < this->_impl.size()); this->_impl.set(p, x); return *this; } inline auto get(const size_type p) const noexcept(NO_EXCEPT) { assert(0 <= p && p < this->_impl.size()); return this->_impl.fold(p, p+1); } inline auto operator[](const size_type p) noexcept(NO_EXCEPT) { return point_reference(this, p); } inline auto operator()(const size_type l, const size_type r) noexcept(NO_EXCEPT) { return range_reference(this, l, r); } inline auto fold(const size_type l, const size_type r) const noexcept(NO_EXCEPT) { assert(0 <= l && l <= r && r <= this->_impl.size()); return this->_impl.fold(l, r); } inline auto fold(const size_type r) const noexcept(NO_EXCEPT) { assert(0 <= r && r <= this->_impl.size()); return this->_impl.fold(0, r); } inline auto fold() const noexcept(NO_EXCEPT) { return this->_impl.fold_all(); } template<bool (*f)(value_type)> inline auto max_right(const size_type l) const noexcept(NO_EXCEPT) { return this->_impl.max_right(l, [](value_type x) { return f(x); }); } template<class F> inline auto max_right(const size_type l, F&& f) const noexcept(NO_EXCEPT) { return this->_impl.max_right(l, std::forward<F>(f)); } template<bool (*f)(value_type)> inline auto min_left(const size_type r) const noexcept(NO_EXCEPT) { return this->_impl.min_left(r, [](value_type x) { return f(x); }); } template<class F> inline auto min_left(const size_type r, F&& f) const noexcept(NO_EXCEPT) { return this->_impl.min_left(r, std::forward<F>(f)); } struct iterator; protected: using iterator_interface = internal::container_iterator_interface<value_type, const segment_tree, iterator>; public: struct iterator : iterator_interface { using iterator_interface::iterator_interface; }; inline auto begin() const noexcept(NO_EXCEPT) { return iterator(this, 0); } inline auto end() const noexcept(NO_EXCEPT) { return iterator(this, this->_impl.size()); } inline auto rbegin() const noexcept(NO_EXCEPT) { return std::make_reverse_iterator(this->end()); } inline auto rend() const noexcept(NO_EXCEPT) { return std::make_reverse_iterator(this->begin()); } }; template<actions::internal::operatable_action Action> struct segment_tree<Action> : segment_tree<typename Action::operand> { using segment_tree<typename Action::operand>::segment_tree; }; } // namespace uni #line 2 "action/range_set_range_sum.hpp" #line 5 "action/range_set_range_sum.hpp" #line 7 "action/range_set_range_sum.hpp" #line 2 "algebraic/addition.hpp" #line 7 "algebraic/addition.hpp" namespace uni { namespace algebraic { template<class T> struct addition : base<T>, associative, commutative { using base<T>::base; friend inline addition operator+(const addition& lhs, const addition& rhs) noexcept(NO_EXCEPT) { return lhs.val() + rhs.val(); } template<std::integral Scalar> friend inline addition operator*(const Scalar k, const addition& rhs) noexcept(NO_EXCEPT) { return k * rhs.val(); } inline addition operator-() const noexcept(NO_EXCEPT) requires internal::invertible<T> { return -this->val(); } }; } // namespace algebraic } // namespace uni #line 2 "algebraic/assignment.hpp" #line 4 "algebraic/assignment.hpp" #line 7 "algebraic/assignment.hpp" namespace uni { namespace algebraic { template<class T> struct assignment : base<std::optional<T>>, scalar_multipliable<assignment<T>>::identity, associative { using base<std::optional<T>>::base; friend inline assignment operator+(const assignment& lhs, const assignment& rhs) noexcept(NO_EXCEPT) { if(lhs->has_value()) return lhs; return rhs; } }; } // namespace algebraic } // namespace uni #line 10 "action/range_set_range_sum.hpp" namespace uni { namespace actions { template<class T> struct range_set_range_sum { using operand = algebraic::addition<T>; using operation = algebraic::assignment<T>; static operand mapping(const operation& f, const operand& x) noexcept(NO_EXCEPT) { return f->value_or(x.val()); } static auto power(const operation& x, const uni::internal::size_t length) noexcept(NO_EXCEPT) { if(x->has_value()) return operation(x->operator*() * length); return x; } }; static_assert(internal::full_action<range_set_range_sum<int>>); } // namespace actions } // namespace uni #line 2 "action/range_add_range_sum.hpp" #line 5 "action/range_add_range_sum.hpp" #line 7 "action/range_add_range_sum.hpp" #line 2 "action/helpers.hpp" #line 5 "action/helpers.hpp" #line 2 "algebraic/null.hpp" #line 5 "algebraic/null.hpp" #line 9 "algebraic/null.hpp" #line 12 "algebraic/null.hpp" namespace uni { namespace algebraic { template<class T = uni::internal::dummy> struct null : base<T>, scalar_multipliable<null<T>>::identity, associative, commutative { using base<T>::base; friend inline null operator+(const null& lhs, const null& rhs) noexcept(NO_EXCEPT) { if(lhs == null()) return rhs; return lhs; } inline null operator-() const noexcept(NO_EXCEPT) requires internal::invertible<T> { return -*this; } }; } // namespace algebraic } // namespace uni #line 2 "algebraic/helper.hpp" #line 7 "algebraic/helper.hpp" namespace uni { namespace algebraic { template<class T, auto op, auto e, class... Tags> struct helper : uni::algebraic::base<T>, uni::algebraic::scalar_multipliable<helper<T, op, e, Tags...>>::automatic, Tags... { static_assert(std::same_as<std::invoke_result_t<decltype(op), T, T>, T>); static_assert(std::same_as<std::invoke_result_t<decltype(e)>, T>); using uni::algebraic::base<T>::base; helper() : helper(e()) {} friend inline helper operator+(const helper& lhs, const helper& rhs) noexcept(NO_EXCEPT) { return op(lhs.val(), rhs.val()); } }; template<class T, auto op, auto e> using monoid_helper = helper<T, op, e, associative>; template<class T> struct make_magma { using type = null<T>; static_assert(internal::magma<type>); }; template<internal::magma T> struct make_magma<T> { using type = T; }; template<class T> using make_magma_t = typename make_magma<T>::type; } // namespace algebraic } // namespace uni #line 2 "action/null.hpp" #line 6 "action/null.hpp" #line 8 "action/null.hpp" #line 11 "action/null.hpp" namespace uni { namespace actions { template<class T> struct null : base<algebraic::null<T>> { using operand = algebraic::null<T>; using operation = algebraic::null<T>; static operand mapping(const operation&, const operand& x) noexcept(NO_EXCEPT) { return x; } }; } // namespace actions } // namespace uni #line 11 "action/helpers.hpp" namespace uni { namespace actions { template<class S, auto op, auto e, class F, auto _mapping, auto composition, auto id, auto _power = nullptr> struct helper { static_assert(std::same_as<std::invoke_result_t<decltype(_mapping), F, S>, S>); // static_assert(std::same_as<std::invoke_result_t<decltype(_power), F, uni::internal::size_t>, F>); using operand = algebraic::monoid_helper<S, op, e>; using operation = algebraic::monoid_helper<F, composition, id>; static operand mapping(const operation& f, const operand& x) noexcept(NO_EXCEPT) { return _mapping(f.val(), x.val()); } static operation power(const operation& x, [[maybe_unused]] const uni::internal::size_t length) noexcept(NO_EXCEPT) { if constexpr(_power == nullptr) return x; else return _power(x.val(), length); } }; template<class S, class F, auto _mapping, auto _power = nullptr> struct mixer { static_assert(std::same_as<std::invoke_result_t<decltype(_mapping), F, S>, S>); static_assert(std::same_as<std::invoke_result_t<decltype(_power), F, uni::internal::size_t>, F>); using operand = S; using operation = F; static operand mapping(const operation& f, const operand& x) noexcept(NO_EXCEPT) { return _mapping(f.val(), x.val()); } static operation power(const operation& x, [[maybe_unused]] const uni::internal::size_t length) noexcept(NO_EXCEPT) { if constexpr(_power == nullptr) return x; return _power(x.val(), length); } }; template<class S> struct amplifier { using operand = S; using operation = S; static operand mapping(const operation& f, const operand& x) noexcept(NO_EXCEPT) { return f + x; } static operation power(const operation& x, [[maybe_unused]] const uni::internal::size_t length) noexcept(NO_EXCEPT) { return length * x; } }; template<algebraic::internal::magma Magma> struct make_operatable { struct type { using operand = Magma; }; static_assert(internal::operatable_action<type>); }; template<class T> using make_operatable_t = typename make_operatable<T>::type; template<algebraic::internal::magma Magma> struct make_effective { struct type : base<Magma> { using operation = Magma; }; static_assert(internal::effective_action<type>); }; template<class T> using make_effective_t = typename make_effective<T>::type; template<class T> struct make_full { using type = null<T>; static_assert(internal::full_action<type>); }; template<algebraic::internal::magma Magma> struct make_full<Magma> { using type = make_full<make_operatable_t<Magma>>::type; }; template<internal::full_action Action> struct make_full<Action> { using type = Action; }; template<internal::operand_only_action Action> struct make_full<Action> { using base = Action; struct type : actions::base<algebraic::null<typename base::operand::value_type>> { using operand = typename base::operand; using operation = algebraic::null<typename base::operand::value_type>; using actions::base<algebraic::null<typename base::operand::value_type>>::base; static operand mapping(const operation&, const operand& x) noexcept(NO_EXCEPT) { return x; } }; static_assert(internal::full_action<type>); }; template<internal::effect_only_action Action> struct make_full<Action> { using base = Action; struct type : base { using operand = typename base::operation; using operation = typename base::operation; using base::base; static operand mapping(const operation& f, const operand& x) noexcept(NO_EXCEPT) { return f + x; } }; static_assert(internal::full_action<type>); }; template<class T> using make_full_t = typename make_full<T>::type; } // namespace actions } // namespace uni #line 9 "action/range_add_range_sum.hpp" namespace uni { namespace actions { template<class T> using range_add_range_sum = amplifier<algebraic::addition<T>>; static_assert(internal::full_action<range_add_range_sum<int>>); } // namespace actions } // namespace uni #line 2 "action/range_sum.hpp" #line 6 "action/range_sum.hpp" #line 8 "action/range_sum.hpp" namespace uni { namespace actions { template<class T> using range_sum = make_operatable_t<uni::algebraic::addition<T>>; static_assert(internal::operand_only_action<range_sum<int>>); } // namespace actions } // namespace uni #line 2 "algebraic/combined.hpp" #line 6 "algebraic/combined.hpp" #line 9 "algebraic/combined.hpp" #line 12 "algebraic/combined.hpp" namespace uni { namespace algebraic { template< internal::magma M0, internal::magma M1 > struct combined : base<std::pair<M0, M1>>, std::conditional_t<internal::associative<M0> && internal::associative<M1>, associative, uni::internal::dummy>, std::conditional_t<internal::commutative<M0> && internal::commutative<M1>, commutative, uni::internal::dummy> { using base<std::pair<M0, M1>>::base; template<class T> requires std::convertible_to<T, M0> && std::convertible_to<T, M1> combined(const T& v) : combined(v, v) {}; friend inline combined operator+(const combined& lhs, const combined& rhs) noexcept(NO_EXCEPT) { return { lhs->first + rhs->first, lhs->second + rhs->second }; } template<std::integral Scalar> friend inline combined&& operator*(const Scalar k, const combined& val) noexcept(NO_EXCEPT) { return { k * val->first, k * val->second }; } friend inline combined operator-(const combined& val) noexcept(NO_EXCEPT) requires internal::invertible<M0> && internal::invertible<M1> { return { -val->first, -val->second }; } }; } // namespace algebraic } // namespace uni #line 2 "algebraic/minimum.hpp" #line 6 "algebraic/minimum.hpp" #line 9 "algebraic/minimum.hpp" namespace uni { namespace algebraic { template<class T> struct minimum : base<T>, scalar_multipliable<minimum<T>>::identity, associative, commutative { using base<T>::base; minimum() noexcept(NO_EXCEPT) : minimum(std::numeric_limits<T>::max()) {}; friend inline minimum operator+(const minimum& lhs, const minimum& rhs) noexcept(NO_EXCEPT) { return std::min(lhs.val(), rhs.val()); } }; } // namespace algebraic } // namespace uni #line 26 "data_structure/adaptor/set.hpp" namespace uni { namespace internal { template< template<class...> class Tree, template<class...> class Action > requires actions::internal::action<Action<internal::size_t>> struct set_adaptor_impl { using size_type = internal::size_t; using key_type = internal::size_t; using value_type = internal::size_t; protected: using impl_data_type = algebraic::combined<algebraic::addition<value_type>, algebraic::minimum<value_type>>; using impl_tree = Tree< std::conditional_t< internal::available_with< Tree, Action<impl_data_type> >, Action<impl_data_type>, actions::range_sum<impl_data_type> > >; impl_tree _data; size_type _elem = 0; public: set_adaptor_impl(const size_type sup) noexcept(NO_EXCEPT) : _data(sup) {}; inline size_type size() const noexcept(NO_EXCEPT) { return this->_data.fold(); } inline bool empty() const noexcept(NO_EXCEPT) { return this->size() == 0; } inline size_type count(const key_type& k) const noexcept(NO_EXCEPT) { return this->_data.get(k).val()->first.val(); } inline bool contains(const key_type& k) const noexcept(NO_EXCEPT) { return this->_data.get(k).val()->first.val() > 0; } inline value_type mex(const key_type& base = 0) const noexcept(NO_EXCEPT) { return this->_data.max_right(base, [](const auto& p) { return p.val()->second.val() > 0; }); } inline std::optional<value_type> next(const key_type& k, const size_type count = 0) const noexcept(NO_EXCEPT) { const auto v = this->_data.max_right(k, [count](const auto& p) { return p.val()->first.val() <= count; }); if(v == this->_data.size()) return {}; return { v }; } inline std::optional<value_type> prev(const key_type& k, const size_type count = 0) const noexcept(NO_EXCEPT) { const auto v = this->_data.min_left(k + 1, [count](const auto& p) { return p.val()->first.val() <= count; }); if(v == 0) return {}; return { v - 1 }; } inline auto kth_smallest(const size_type k) const noexcept(NO_EXCEPT) { return this->next(0, k); } inline auto kth_largest(const size_type k) const noexcept(NO_EXCEPT) { return this->prev(this->_data.size()-1, k); } inline value_type min() const noexcept(NO_EXCEPT) { return this->kth_smallest(0); } inline value_type max() const noexcept(NO_EXCEPT) { return this->kth_largest(0); } inline size_type count_under(const value_type& v) const noexcept(NO_EXCEPT) { return this->_data.fold(0, v).val()->first.val(); } inline size_type count_over(const value_type& v) const noexcept(NO_EXCEPT) { return this->_data.fold(v+1, this->_data.size()).val()->first.val(); } inline size_type count_or_under(const value_type& v) const noexcept(NO_EXCEPT) { return this->_data.fold(0, v+1).val()->first.val(); } inline size_type count_or_over(const value_type& v) const noexcept(NO_EXCEPT) { return this->_data.fold(v, this->_data.size()).val()->first.val(); } template<comparison com = comparison::equal_to> inline size_type count(const value_type& v) const noexcept(NO_EXCEPT) { if constexpr(com == comparison::eq) return this->count(v); if constexpr(com == comparison::under) return this->count_under(v); if constexpr(com == comparison::over) return this->count_over(v); if constexpr(com == comparison::or_under) return this->count_or_under(v); if constexpr(com == comparison::or_over) return this->count_or_over(v); assert(false); } inline const auto& _debug() const noexcept(NO_EXCEPT) { return this->_data; } }; }; template<template<class...> class Tree = uni::segment_tree> struct set_adaptor : internal::set_adaptor_impl<Tree, actions::range_set_range_sum> { using size_type = internal::size_t; using key_type = internal::size_t; using value_type = size_type; protected: using Base = internal::set_adaptor_impl<Tree, actions::range_set_range_sum>; using impl_data_type = typename Base::impl_data_type; public: set_adaptor() noexcept(NO_EXCEPT) = default; set_adaptor(const size_type sup) noexcept(NO_EXCEPT) : Base(sup) {}; template<std::input_iterator I, std::sentinel_for<I> S> set_adaptor(I first, S last) noexcept(NO_EXCEPT) : set_adaptor(*std::ranges::max_element(first, last) + 1) { valarray<bool> bits(this->_data.size()); REP(itr, first, last) { assert(0 <= *itr && *itr < this->_data.size()); bits[*itr] = true; } this->build_from_bits(ALL(bits)); }; template<std::ranges::input_range R> set_adaptor(R&& range) noexcept(NO_EXCEPT) : set_adaptor(ALL(range)) {} template<std::input_iterator I, std::sentinel_for<I> S> inline auto& build_from_bits(I first, S last) noexcept(NO_EXCEPT) { if constexpr(std::sized_sentinel_for<S, I>) { assert(std::ranges::distance(first, last) == this->_data.size()); } this->_data.assign(first, last); return *this; }; template<std::ranges::input_range R> inline auto& build_from_bits(R&& range) noexcept(NO_EXCEPT) { return this->build_from_bits(ALL(range)); } inline bool insert(const key_type& k) noexcept(NO_EXCEPT) { assert(0 <= k && k < this->_data.size()); const bool res = !this->_data.get(k).val()->first.val(); if(res) this->_data.set(k, impl_data_type{ 1 }); return res; } inline bool remove(const key_type& k) noexcept(NO_EXCEPT) { assert(0 <= k && k < this->_data.size()); const bool res = this->_data.get(k).val()->first.val(); if(res) this->_data.set(k, impl_data_type{ 0 }); return res; } }; template<template<class...> class Tree = uni::segment_tree, std::integral Size = std::int64_t> struct multiset_adaptor : internal::set_adaptor_impl<Tree, actions::range_add_range_sum> { using size_type = Size; using key_type = internal::size_t; using value_type = key_type; private: using Base = internal::set_adaptor_impl<Tree, actions::range_add_range_sum>; using impl_data_type = typename Base::impl_data_type; public: multiset_adaptor(const size_type sup) noexcept(NO_EXCEPT) : Base(sup) {}; template<std::input_iterator I, std::sentinel_for<I> S> multiset_adaptor(I first, S last) noexcept(NO_EXCEPT) : Base(*std::ranges::max_element(first, last) + 1) { vector<size_type> cnts(this->_data.size()); REP(itr, first, last) { assert(0 <= *itr && *itr < this->_data.size()); cnts[*itr]++; } this->build_from_histogram(ALL(cnts)); }; template<std::ranges::input_range R> multiset_adaptor(R&& range) noexcept(NO_EXCEPT) : multiset_adaptor(ALL(range)) {} template<std::input_iterator I, std::sentinel_for<I> S> inline auto& build_from_histogram(I first, S last) noexcept(NO_EXCEPT) { if constexpr(std::sized_sentinel_for<S, I>) { assert(std::ranges::distance(first, last) == this->_data.size()); } this->_data.assign(first, last); return *this; }; template<std::ranges::input_range R> inline auto& build_from_histogram(R&& range) noexcept(NO_EXCEPT) { return this->build_from_histogram(ALL(range)); } inline void insert(const key_type& k, const size_type count = 1) noexcept(NO_EXCEPT) { assert(0 <= k && k < this->_data.size()); assert(0 <= count); const auto cur = this->_data.get(k); const auto num = cur.val()->first.val(); this->_data.set(k, impl_data_type{ num + count }); this->_elem += count; } inline void remove(const key_type& k, const size_type count = 1) noexcept(NO_EXCEPT) { assert(0 <= k && k < this->_data.size()); const auto cur = this->_data.get(k); const auto num = cur.val()->first.val(); assert(0 <= count && count <= num); this->_data.set(k, impl_data_type{ num - count }); } }; } // namespace uni #line 4 "include/data_structures.hpp" #line 2 "data_structure/bit_vector.hpp" #line 9 "data_structure/bit_vector.hpp" #line 14 "data_structure/bit_vector.hpp" #line 16 "data_structure/bit_vector.hpp" namespace uni { // Thanks to: https://github.com/NyaanNyaan/library/blob/master/data-structure-2d/wavelet-matrix.hpp struct bit_vector { using size_type = std::uint_fast32_t; private: static constexpr size_type WORDSIZE = 64; std::vector<std::uint64_t> _block; std::vector<size_type> _count; size_type _n, _zeros; public: bit_vector(const size_type n = 0) noexcept(NO_EXCEPT) { this->init(n); } template<std::input_iterator I, std::sentinel_for<I> S> bit_vector(I first, S last) noexcept(NO_EXCEPT) : bit_vector(std::ranges::distance(first, last)) { size_type pos = 0; for(auto itr=first; itr != last; ++pos, ++itr) if(*itr) this->set(pos); } template<std::ranges::input_range R> bit_vector(R&& range) noexcept(NO_EXCEPT) : bit_vector(ALL(range)) {} template<class T> bit_vector(const std::initializer_list<T>& init_list) noexcept(NO_EXCEPT) : bit_vector(ALL(init_list)) {} inline constexpr size_type size() const noexcept(NO_EXCEPT) { return this->_n; } inline constexpr size_type zeros() const noexcept(NO_EXCEPT) { return this->_zeros; } inline constexpr size_type ones() const noexcept(NO_EXCEPT) { return this->_n - this->_zeros; } inline void set(const size_type k) noexcept(NO_EXCEPT) { this->_block[k / WORDSIZE] |= (1LL << (k % WORDSIZE)); } inline bool get(const size_type k) const noexcept(NO_EXCEPT) { return 1U & static_cast<std::uint32_t>(this->_block[k / WORDSIZE] >> (k % WORDSIZE)); } __attribute__((optimize("O3", "unroll-loops"))) inline void init(const size_type n) noexcept(NO_EXCEPT) { this->_n = this->_zeros = n; this->_block.resize(this->_n / WORDSIZE + 1, 0); this->_count.resize(this->_block.size(), 0); } inline void build() noexcept(NO_EXCEPT) { for(auto k = 1UL; k < this->_block.size(); ++k) { this->_count[k] = this->_count[k-1] + static_cast<size_type>(std::popcount(this->_block[k-1])); } this->_zeros = this->rank0(this->_n); } inline size_type rank1(const size_type k) const noexcept(NO_EXCEPT) { return this->_count[k / WORDSIZE] + static_cast<size_type>(std::popcount(uni::clear_higher_bits(this->_block[k / WORDSIZE], k % WORDSIZE))); } inline size_type rank0(const size_type k) const noexcept(NO_EXCEPT) { return k - this->rank1(k); } template<bool BIT> inline size_type rank(const size_type k) const noexcept(NO_EXCEPT) { if constexpr(BIT) return this->rank0(k); else return this->rank1(k); } template<bool BIT> inline size_type select(const size_type rank) const noexcept(NO_EXCEPT) { if constexpr(BIT) { if(rank >= this->ones()) return this->_n; } else { if(rank >= this->zeros()) return this->_n; } size_type index = 0; { size_type ng = static_cast<size_type>(this->_count.size()); while(ng - index > 1) { size_type mid = (ng + index) / 2; size_type cnt = this->_count[mid]; if constexpr(!BIT) cnt = mid * WORDSIZE - cnt; (cnt <= rank ? index : ng) = mid; } } const size_type base = index * WORDSIZE; if constexpr(BIT) { return base + select64(this->_block[index], rank - this->_count[index]); } else { return base + select64(~this->_block[index], rank - (base - this->_count[index])); } } inline size_type select0(const size_type k) const noexcept(NO_EXCEPT) { return this->select<false>(k); } inline size_type select1(const size_type k) const noexcept(NO_EXCEPT) { return this->select<true>(k); } struct iterator; private: using iterator_interface = internal::container_iterator_interface<bool, const bit_vector, iterator>; public: struct iterator : iterator_interface { iterator() noexcept = default; iterator(const bit_vector *const ref, const size_type pos) noexcept(NO_EXCEPT) : bit_vector::iterator_interface(ref, static_cast<difference_type>(pos)) {} inline bool operator*() const noexcept(NO_EXCEPT) { return this->ref()->get(this->pos()); } }; inline auto begin() const noexcept(NO_EXCEPT) { return iterator(this, 0); } inline auto end() const noexcept(NO_EXCEPT) { return iterator(this, this->size()); } }; } // namespace uni #line 2 "data_structure/disjoint_set.hpp" #line 8 "data_structure/disjoint_set.hpp" #line 12 "data_structure/disjoint_set.hpp" #line 15 "data_structure/disjoint_set.hpp" #line 17 "data_structure/disjoint_set.hpp" namespace uni { //Thanks to: atcoder::disjoint_set struct disjoint_set { using size_type = internal::size_t; private: size_type _n = 0, _group_count = 0; // root node: -1 * component size // otherwise: parent std::vector<size_type> _parent_or_size; public: disjoint_set() noexcept = default; explicit disjoint_set(const size_type n) noexcept(NO_EXCEPT) : _n(n), _group_count(n), _parent_or_size(n, -1) {} inline auto size() const noexcept(NO_EXCEPT) { return this->_n; } inline auto group_count() const noexcept(NO_EXCEPT) { return this->_group_count; } inline auto merge(const size_type a, const size_type b) noexcept(NO_EXCEPT) { assert(0 <= a && a < _n); assert(0 <= b && b < _n); size_type x = this->leader(a), y = this->leader(b); if (x == y) return x; --this->_group_count; if (-this->_parent_or_size[x] < -this->_parent_or_size[y]) std::swap(x, y); this->_parent_or_size[x] += this->_parent_or_size[y]; this->_parent_or_size[y] = x; return x; } inline bool same(const size_type a, const size_type b) noexcept(NO_EXCEPT) { assert(0 <= a && a < _n); assert(0 <= b && b < _n); return this->leader(a) == this->leader(b); } inline size_type leader(const size_type a) noexcept(NO_EXCEPT) { assert(0 <= a && a < _n); if(this->_parent_or_size[a] < 0) return a; return this->_parent_or_size[a] = this->leader(this->_parent_or_size[a]); } inline auto size(const size_type a) noexcept(NO_EXCEPT) { assert(0 <= a && a < _n); return -this->_parent_or_size[this->leader(a)]; } inline auto groups() noexcept(NO_EXCEPT) { vector<size_type> leader_buf(_n), group_size(_n); REP(i, this->_n) { leader_buf[i] = this->leader(i); group_size[leader_buf[i]]++; } vector<vector<size_type>> result(_n); REP(i, this->_n) result[i].reserve(group_size[i]); REP(i, this->_n) result[leader_buf[i]].push_back(i); { const auto range = std::ranges::remove_if(result, [&](const auto& v) { return v.empty(); }); result.erase(ALL(range)); } return result; } }; } // namespace uni #line 2 "data_structure/disjoint_sparse_table.hpp" #line 12 "data_structure/disjoint_sparse_table.hpp" #line 19 "data_structure/disjoint_sparse_table.hpp" #line 21 "data_structure/disjoint_sparse_table.hpp" #line 24 "data_structure/disjoint_sparse_table.hpp" namespace uni { namespace internal { namespace disjoint_sparse_table_impl { // Thanks to: https://noshi91.hatenablog.com/entry/2018/05/08/183946 template<algebraic::internal::semigroup Operand> struct core { using size_type = internal::size_t; using operand = Operand; using iterator = std::vector<std::vector<Operand>>; size_type _n = 0, _depth = 0; bool _built = false; protected: std::vector<std::vector<operand>> _table = {}; public: explicit core(const size_type n = 0) noexcept(NO_EXCEPT) : _n(n) { this->_depth = std::bit_width<std::make_unsigned_t<size_type>>(n); this->_table.resize(this->_depth+1, std::vector<operand>(n)); } template<std::input_iterator I, std::sized_sentinel_for<I> S> core(I first, S last) noexcept(NO_EXCEPT) : core(static_cast<size_type>(std::ranges::distance(first, last))) { std::ranges::copy(first, last, this->_table.begin()->begin()); } template<bool FORCE = false> inline auto& build() noexcept(NO_EXCEPT) { if(!FORCE and this->_built) return *this; FOR(i, 2, this->_depth) { const size_type len = 1 << i; for(size_type l = 0, m = (len >> 1); m < this->_n; l += len, m = l + (len >> 1)) { this->_table[i - 1][m - 1] = this->_table.front()[m - 1]; REPD(j, l, m-1) { this->_table[i - 1][j] = this->_table.front()[j] + this->_table[i - 1][j + 1]; } this->_table[i - 1][m] = this->_table.front()[m]; REP(j, m + 1, std::min(l + len, this->_n)) { this->_table[i - 1][j] = this->_table[i - 1][j - 1] + this->_table.front()[j]; } } } this->_built = true; return *this; } inline auto& raw() noexcept(NO_EXCEPT) { this->_built = false; return this->_table.front(); } inline const auto& raw() const noexcept(NO_EXCEPT) { return this->_table.front(); } inline auto& data() noexcept(NO_EXCEPT) { return this->_table; } inline const auto& data() const noexcept(NO_EXCEPT) { return this->_table; } size_type size() const noexcept(NO_EXCEPT) { return this->_n; } operand fold(const size_type l, size_type r) { if(l == r) return operand{}; if(l == --r) return this->_table.front()[l]; this->build(); const size_type p = highest_bit_pos<std::make_unsigned_t<size_type>>(l ^ r); return this->_table[p][l] + this->_table[p][r]; } }; } // namespace disjoint_sparse_table_impl } // namespace internal template<class> struct disjoint_sparse_table : internal::unconstructible {}; template<algebraic::internal::semigroup Semigroup> struct disjoint_sparse_table<Semigroup> { private: using core = internal::disjoint_sparse_table_impl::core<Semigroup>; using iterator = core::iterator; core _impl; public: using value_type = Semigroup; using size_type = core::size_type; protected: inline auto _positivize_index(const size_type p) const noexcept(NO_EXCEPT) { return p < 0 ? this->_impl.size() + p : p; } public: explicit disjoint_sparse_table(const size_type n, const value_type& val = value_type()) noexcept(NO_EXCEPT) : _impl(n) { this->_impl.data().begin()->assign(n, val); } template<std::input_iterator I, std::sized_sentinel_for<I> S> disjoint_sparse_table(I first, S last) noexcept(NO_EXCEPT) : _impl(first, last) {} template<std::ranges::input_range R> explicit disjoint_sparse_table(R&& range) noexcept(NO_EXCEPT) : _impl(std::ranges::begin(range), std::ranges::end(range)) {} inline auto& raw() noexcept(NO_EXCEPT) { return this->_impl.raw(); } inline const auto& raw() const noexcept(NO_EXCEPT) { return this->_impl.raw(); } inline const auto& data() const noexcept(NO_EXCEPT) { return this->impl.data(); } inline auto size() const noexcept(NO_EXCEPT) { return this->_impl.size(); } friend internal::range_reference<disjoint_sparse_table>; struct range_reference : internal::range_reference<disjoint_sparse_table> { range_reference(disjoint_sparse_table *const super, const size_type l, const size_type r) noexcept(NO_EXCEPT) : internal::range_reference<disjoint_sparse_table>(super, super->_positivize_index(l), super->_positivize_index(r)) { assert(0 <= this->_begin && this->_begin <= this->_end && this->_end <= this->_super->size()); } inline auto fold() noexcept(NO_EXCEPT) { return this->_super->fold(this->_begin, this->_end); } }; inline auto fold(size_type l, size_type r) noexcept(NO_EXCEPT) { l = this->_positivize_index(l), r = this->_positivize_index(r); assert(0 <= l && l <= r && r <= this->size()); return this->_impl.fold(l, r); } inline auto fold() noexcept(NO_EXCEPT) { return this->fold(0, this->size()); } inline auto operator[](const size_type index) const noexcept(NO_EXCEPT) { return this->_impl.data().front()[index]; } inline auto operator()(const size_type l, const size_type r) noexcept(NO_EXCEPT) { return range_reference(this, l, r); } inline auto begin() const noexcept(NO_EXCEPT) { return this->_impl.data().begin()->begin(); } inline auto end() const noexcept(NO_EXCEPT) { return this->_impl.data().begin()->end(); } inline auto rbegin() const noexcept(NO_EXCEPT) { return this->_impl.data().begin()->rbegin(); } inline auto rend() const noexcept(NO_EXCEPT) { return this->_impl.data().begin()->rend(); } }; template<actions::internal::operatable_action Action> struct disjoint_sparse_table<Action> : disjoint_sparse_table<typename Action::operand> { using disjoint_sparse_table<typename Action::operand>::disjoint_sparse_table; }; } // namespace uni #line 2 "data_structure/dynamic_segment_tree.hpp" #include <memory_resource> #line 6 "data_structure/dynamic_segment_tree.hpp" #include <memory> #line 13 "data_structure/dynamic_segment_tree.hpp" #line 16 "data_structure/dynamic_segment_tree.hpp" #line 23 "data_structure/dynamic_segment_tree.hpp" #line 2 "data_structure/internal/node_handler.hpp" #line 5 "data_structure/internal/node_handler.hpp" #line 7 "data_structure/internal/node_handler.hpp" namespace uni { namespace node_handlers { namespace internal { template<class Allocator, class NodeType> struct base_handler { using allocator_type = Allocator; protected: using allocator_traits = std::allocator_traits<allocator_type>; using node_allocator_type = allocator_traits::template rebind_alloc<NodeType>; using node_allocator_traits = std::allocator_traits<node_allocator_type>; [[no_unique_address]] node_allocator_type _allocator; public: base_handler(const allocator_type& allocator = allocator_type()) noexcept(NO_EXCEPT) : _allocator(allocator) {} base_handler(const base_handler& source) noexcept(NO_EXCEPT) : _allocator(node_allocator_traits::select_on_container_copy_construction(source._allocator)) {} base_handler(base_handler&& source) noexcept = default; auto& operator=(const base_handler& source) noexcept(NO_EXCEPT) { if(&source != this) { if constexpr(allocator_traits::propagate_on_container_copy_assignment::value) { this->_allocator = source._allocator; } } return *this; } auto& operator=(base_handler&& source) noexcept(NO_EXCEPT) { if(&source != this) { if constexpr(allocator_traits::propagate_on_container_move_assignment::value) { this->_allocator = source._allocator; } } return *this; } }; } // namespace internal template<class Allocator> struct cloneable { template<class NodeType> struct handler : internal::base_handler<Allocator, NodeType> { using internal::base_handler<Allocator, NodeType>::base_handler; using node_type = NodeType; using node_pointer = std::shared_ptr<node_type>; inline static node_pointer nil = std::make_shared<node_type>(); template<class... Args> inline auto create(Args&&... args) noexcept(NO_EXCEPT) { return std::allocate_shared<node_type>(this->_allocator, std::forward<Args>(args)...); } inline auto clone(const node_pointer& ptr) noexcept(NO_EXCEPT) { return this->create(*ptr); } inline constexpr bool disposable(const node_pointer&) const noexcept { return false; } inline constexpr void dispose(const node_pointer&) const noexcept {} }; }; template<class Allocator> struct reusing { template<class NodeType> struct handler : internal::base_handler<Allocator, NodeType> { using node_type = NodeType; using node_pointer = std::add_pointer_t<node_type>; private: using base = internal::base_handler<Allocator, NodeType>; using node_allocator_traits = typename base::node_allocator_traits; inline static int _instance_count = 0; public: using base::base; using allocator_type = typename base::allocator_type; inline static node_pointer nil; handler(const allocator_type& allocator = allocator_type()) noexcept(NO_EXCEPT) : base(allocator) { if(handler::_instance_count++ == 0) { handler::nil = new node_type{}; } } ~handler() noexcept { if(--handler::_instance_count == 0) { delete handler::nil; } } template<class... Args> inline auto create(Args&&... args) noexcept(NO_EXCEPT) { node_pointer node = node_allocator_traits::allocate(this->_allocator, 1); node_allocator_traits::construct(this->_allocator, node, std::forward<Args>(args)...); return node; } inline auto clone(const node_pointer ptr) const noexcept { return ptr; } inline bool disposable(const node_pointer node) const noexcept(NO_EXCEPT) { return node != handler::nil; } inline void dispose(const node_pointer node) noexcept(NO_EXCEPT) { node_allocator_traits::destroy(this->_allocator, node); node_allocator_traits::deallocate(this->_allocator, node, 1); } }; }; } // namespace node_handlers } // namespace uni #line 25 "data_structure/dynamic_segment_tree.hpp" #line 28 "data_structure/dynamic_segment_tree.hpp" #line 2 "debugger/debug.hpp" #line 9 "debugger/debug.hpp" #include <array> #line 13 "debugger/debug.hpp" #include <bitset> #include <deque> #include <queue> #include <stack> #include <set> #include <unordered_set> #include <map> #include <unordered_map> #line 22 "debugger/debug.hpp" #include <iomanip> #line 26 "debugger/debug.hpp" #line 2 "numeric/int128.hpp" #include <cctype> #line 9 "numeric/int128.hpp" #line 12 "numeric/int128.hpp" #line 14 "numeric/int128.hpp" namespace std { template<class C, class S> auto& operator>>(std::basic_istream<C, S>& in, uni::i128& v) noexcept(NO_EXCEPT) { std::string str; in >> str; v = 0; bool negative = (str[0] == '-'); REP(d, std::ranges::next(str.begin(), negative), str.end()) { assert(std::isdigit(*d)); v = v * 10 + *d - '0'; } if(negative) v *= -1; return in; } template<class C, class S> auto& operator>>(std::basic_istream<C, S>& in, uni::u128& v) noexcept(NO_EXCEPT) { std::string str; in >> str; v = 0U; assert(str[0] != '-'); REP(d, str.begin(), str.end()) { assert(std::isdigit(*d)); v = v * 10U + *d - '0'; } return in; } template<class C, class S> auto& operator<<(std::basic_ostream<C, S>& out, uni::i128 v) noexcept(NO_EXCEPT) { if(v == 0) return out << 0; if(v < 0) out << '-', v *= -1; std::string str; while(v > 0) str += static_cast<char>(v%10) + '0', v /= 10; std::reverse(str.begin(), str.end()); return out << str; } template<class C, class S> auto& operator<<(std::basic_ostream<C, S>& out, uni::u128 v) noexcept(NO_EXCEPT) { if(v == 0) return out << 0U; std::string str; while(v > 0) str += static_cast<char>(v%10U) + '0', v /= 10U; std::reverse(str.begin(), str.end()); return out << str; } } #line 29 "debugger/debug.hpp" #line 2 "internal/resolving_rank.hpp" namespace uni { namespace internal { template<int P> struct resolving_rank : resolving_rank<P-1> {}; template<> struct resolving_rank<0> {}; } // namespace internal } // namespace uni #line 34 "debugger/debug.hpp" #include <typeinfo> #include <cxxabi.h> namespace debugger { template<class T> auto _debug (T&& val) -> decltype(val._debug()) { return val._debug(); } std::ostream *cdebug = &std::clog; #ifdef DEBUGGER_COLORED_OUTPUT constexpr std::string COLOR_LINE = "\033[3;35m"; constexpr std::string COLOR_IDENTIFIER = "\033[32m"; constexpr std::string COLOR_INIT = "\033[m"; constexpr std::string COLOR_STRING = "\033[33m"; constexpr std::string COLOR_TYPE = "\033[34m"; constexpr std::string COLOR_NUMERIC = "\033[36m"; constexpr std::string COLOR_LITERAL_OPERATOR = "\033[31m"; #else constexpr std::string COLOR_LINE = ""; constexpr std::string COLOR_IDENTIFIER = ""; constexpr std::string COLOR_INIT = ""; constexpr std::string COLOR_STRING = ""; constexpr std::string COLOR_TYPE = ""; constexpr std::string COLOR_NUMERIC = ""; constexpr std::string COLOR_LITERAL_OPERATOR = ""; #endif using Brackets = std::pair<std::string, std::string>; template<class T> std::string dump(T&&); template<class T> const std::string get_type_name(T&& val) { const char* const name = typeid(std::forward<T>(val)).name(); int status = -4; char* const demangled_name = abi::__cxa_demangle(name, NULL, NULL, &status); std::string res{name}; if (status == 0) { res = std::string(demangled_name); free(demangled_name); } return COLOR_TYPE + res + COLOR_INIT; } struct debug_t : std::string { using std::string::string; debug_t(const std::string& str) { this->assign(str); } }; template<size_t N, class T> void dump_tuple_impl([[maybe_unused]] T&& val, std::stringstream &res) { if constexpr(N < std::tuple_size_v<std::remove_cvref_t<T>>) { res << dump(std::get<N>(val)); if constexpr(N < std::tuple_size_v<std::remove_cvref_t<T>> - 1) res << ", "; dump_tuple_impl<N + 1>(std::forward<T>(val), res); } } template<std::ranges::input_range R> std::string dump_range_impl(R&& range, const Brackets& brcs = { "[", "]" }, const std::string& spl = ", ") { std::stringstream res; res << brcs.first << " "; auto itr = std::ranges::begin(range); auto end = std::ranges::end(std::forward<R>(range)); while(itr != end) { if(std::ranges::next(itr) == end) res << dump(*itr) << " "; else res << dump(*itr) << spl; ++itr; } res << brcs.second ; return res.str(); } std::string dump_debug_t(debug_t info) { return info; } struct dump_primitive_like { std::string operator()(std::nullptr_t) const { return COLOR_INIT; } template<uni::internal::pointer T> std::string operator()(const T ptr) const { return dump(*ptr); } template<class T> requires uni::internal::derived_from_template<std::remove_cvref_t<T>, std::basic_string> std::string operator()(T&& val) const { std::stringstream res; res << COLOR_STRING << "`" << val << "`" << COLOR_INIT; return res.str(); } std::string operator()(const char val) const { std::stringstream res; res << COLOR_STRING << "\'" << val << "\'" << COLOR_INIT; return res.str(); } std::string operator()(const char val[]) const { std::stringstream res; res << COLOR_STRING << "\"" << val << "\"" << COLOR_INIT; return res.str(); } std::string operator()(const unsigned char val) const { std::stringstream res; res << COLOR_NUMERIC << static_cast<int>(val) << COLOR_INIT; return res.str(); } std::string operator()(const bool val) const { std::stringstream res; res << COLOR_NUMERIC << (val ? "true" : "false" ) << COLOR_INIT; return res.str(); } template<uni::internal::arithmetic T> std::string operator()(const T val) const { std::stringstream res; res << std::setprecision(std::numeric_limits<T>::digits10) << val; auto str = res.str(); std::string dst = ""; while(str.length() > 3) { dst = ',' + str.substr(str.length() - 3, 3) + dst; str = str.substr(0, str.length() - 3); } return COLOR_NUMERIC + str + dst + COLOR_LITERAL_OPERATOR + uni::internal::literal_operator_v<T> + COLOR_INIT; }; template<class T> requires uni::internal::derived_from_template<std::remove_cvref_t<T>, std::optional> std::string operator()(T&& val) const { if(val.has_value()) return dump(*val); return COLOR_TYPE + "invalid" + COLOR_INIT; } }; struct dump_bitset { template<std::size_t N> std::string operator()(const std::bitset<N>& val) const { std::stringstream res; res << COLOR_NUMERIC << val.to_string() << COLOR_INIT; return res.str(); } }; struct dump_has_val { template<class T> requires requires (T val) { val.val(); } std::string operator()(T&& val) const { return dump(val.val()); } }; struct dump_iterator { template<std::input_or_output_iterator I> std::string operator()(I&& itr) const { return COLOR_TYPE + "<iterator> " + COLOR_INIT+ dump(*itr); } }; struct dump_wrapper { template<class T> requires uni::internal::derived_from_template<std::remove_cvref_t<T>, std::map> std::string operator()(T&& val) const { return dump_range_impl(val, Brackets("{", "}")); } template<class T> requires uni::internal::derived_from_template<std::remove_cvref_t<T>, std::multimap> std::string operator()(T&& val) const { return dump_range_impl(val, Brackets("{", "}")); } template<class T> requires uni::internal::derived_from_template<std::remove_cvref_t<T>, std::unordered_map> std::string operator()(T&& val) const { return dump_range_impl(val, Brackets("{", "}")); } template<class T> requires uni::internal::derived_from_template<std::remove_cvref_t<T>, std::unordered_multimap> std::string operator()(T&& val) const { return dump_range_impl(val, Brackets("{", "}")); } template<class T> requires uni::internal::derived_from_template<std::remove_cvref_t<T>, std::set> std::string operator()(T&& val) const { return dump_range_impl(val, Brackets("{", "}")); } template<class T> requires uni::internal::derived_from_template<std::remove_cvref_t<T>, std::multiset> std::string operator()(T&& val) const { return dump_range_impl(val, Brackets("{", "}")); } template<class T> requires uni::internal::derived_from_template<std::remove_cvref_t<T>, std::unordered_set> std::string operator()(T&& val) const { return dump_range_impl(val, Brackets("{", "}")); } template<class T> requires uni::internal::derived_from_template<std::remove_cvref_t<T>, std::unordered_multiset> std::string operator()(T&& val) const { return dump_range_impl(val, Brackets("{", "}")); } template<class T> requires uni::internal::derived_from_template<std::remove_cvref_t<T>, std::valarray> std::string operator()(T&& val) const { return dump_range_impl(val, Brackets("[", "]")); } template<class T> requires uni::internal::derived_from_template<std::remove_cvref_t<T>, std::vector> std::string operator()(T&& val) const { return dump_range_impl(val, Brackets("[", "]")); } template<class T> requires uni::internal::derived_from_template<std::remove_cvref_t<T>, std::deque> std::string operator()(T&& val) const { return dump_range_impl(val, Brackets("[", "]")); } template<uni::internal::derived_from_template<std::queue> T> std::string operator()(T val) const { std::vector<typename T::value_type> vec; while(!val.empty()) vec.emplace_back(val.front()), val.pop(); return dump_range_impl(vec, Brackets("<", ">")); } template<uni::internal::derived_from_template<std::stack> T> std::string operator()(T val) const { std::vector<typename T::value_type> vec; while(!val.empty()) vec.emplace_back(val.top()), val.pop(); std::ranges::reverse(vec); return dump_range_impl(vec, Brackets("<", ">")); } template<uni::internal::derived_from_template<std::priority_queue> T> std::string operator()(T val) const { std::vector<typename T::value_type> vec; while(!val.empty()) vec.emplace_back(val.top()), val.pop(); return dump_range_impl(vec, Brackets("<", ">")); } template<class T> requires uni::internal::derived_from_template<std::remove_cvref_t<T>, std::pair> std::string operator()(T&& val) const { std::stringstream res; res << "( " << dump(val.first) << ", " << dump(val.second) << " )"; return res.str(); } template<class T> requires uni::internal::derived_from_template<std::remove_cvref_t<T>, std::tuple> std::string operator()(T&& val) const { std::stringstream res; res << "( "; dump_tuple_impl<0>(val, res); res << " )"; return res.str(); } }; struct dump_range { template<std::ranges::input_range T> std::string operator()(T&& val) const { return dump_range_impl(val); } }; struct dump_loggable { template<uni::internal::loggable T> std::string operator()(T&& val) const { auto res = _debug(val); if constexpr(std::same_as<decltype(res), debug_t>) { return res; } else { return dump(res); } } }; template<class T> std::string dump(T&& val) { if constexpr(std::same_as<std::remove_cvref_t<T>, debug_t>) { // return "debug_t"; return dump_debug_t(std::forward<T>(val)); } if constexpr(std::invocable<dump_primitive_like, T>) { // return "primitive"; return dump_primitive_like{}(std::forward<T>(val)); } if constexpr(std::invocable<dump_loggable, T>) { // return "loggable"; return dump_loggable{}(std::forward<T>(val)); } if constexpr(std::invocable<dump_has_val, T>) { // return "has val"; return dump_has_val{}(std::forward<T>(val)); } if constexpr(std::invocable<dump_bitset, T>) { // return "bitset"; return dump_bitset{}(std::forward<T>(val)); } if constexpr(std::invocable<dump_iterator, T>) { // return "iterator"; return dump_iterator{}(std::forward<T>(val)); } if constexpr(std::invocable<dump_wrapper, T>) { // return "wrapper"; return dump_wrapper{}(std::forward<T>(val)); } if constexpr(std::invocable<dump_range, T>) {; // return "range"; return dump_range{}(std::forward<T>(val)); } return "== dump error =="; } template<class T> void debug(T&& val, const std::string& endl) { *cdebug << dump(val) << endl << std::flush; } constexpr std::string_view WHITESPACES = " \n\r\t\f\v"; std::string ltrim(const std::string &s) { size_t start = s.find_first_not_of(WHITESPACES); return (start == std::string::npos) ? "" : s.substr(start); } std::string rtrim(const std::string &s) { size_t end = s.find_last_not_of(WHITESPACES); return (end == std::string::npos) ? "" : s.substr(0, end + 1); } std::string trim(const std::string &s) { return rtrim(ltrim(s)); } std::vector<std::string> split(const std::string& str) { static constexpr char SEPARATOR = ','; static constexpr char ESCAPE = '\\'; static constexpr std::string_view QUOTATIONS = "\"\'"; static constexpr std::string_view PARENTHESES = "()[]{}<>"; static constexpr auto PARENTHESES_KINDS = std::ranges::size(PARENTHESES); static_assert(PARENTHESES_KINDS % 2 == 0); std::vector<std::string> res = { "" }; bool quoted = false; std::array<int,(PARENTHESES_KINDS / 2)> enclosed = { 0 }; for(auto itr = std::ranges::begin(str); itr != std::ranges::end(str); ++itr) { if(std::ranges::find(QUOTATIONS, *itr) != std::ranges::end(QUOTATIONS)) { if(itr == std::ranges::begin(str) or *std::ranges::prev(itr) != ESCAPE) { quoted ^= true; } } if(const auto found = std::ranges::find(PARENTHESES, *itr); found != std::ranges::end(PARENTHESES)) { if(not quoted) { auto& target = enclosed[std::ranges::distance(std::begin(PARENTHESES), found) / 2]; target = std::max(0, target - static_cast<int>((std::ranges::distance(std::begin(PARENTHESES), found) % 2) * 2) + 1); } } if( not quoted and static_cast<std::size_t>(std::ranges::count(enclosed, 0)) == std::ranges::size(enclosed) and *itr == SEPARATOR ) { res.push_back(""); } else { res.back() += *itr; } } for(auto&& v : res) v = trim(v); return res; } template<class Arg> void raw(std::nullptr_t, Arg&& arg) { *cdebug << std::forward<Arg>(arg) << std::flush; } template<class Arg> void raw(Arg&& arg) { *cdebug << dump(std::forward<Arg>(arg)) << std::flush; } void debug(const std::vector<std::string>, const size_t, const int, const std::string) { debug(nullptr, COLOR_INIT + "\n"); } std::map<std::pair<std::string, int>, int> count; template<class Head, class... Tail> void debug( const std::vector<std::string> args, const size_t idx, const int line, const std::string path, Head&& H, Tail&&... T ) { if(idx == 0) { std::string file = path.substr(path.find_last_of("/") + 1); debug(nullptr, COLOR_LINE + file + " #" + std::to_string(line) + " (" + std::to_string(count[{ file, line }]++) + ")" + COLOR_INIT); } debug(nullptr, "\n - "); const std::string content = dump(H); const std::string type_name = get_type_name(std::forward<Head>(H)); debug(nullptr, COLOR_IDENTIFIER + args[idx] + COLOR_INIT + " : "); debug(nullptr, content); if(type_name.size() + content.size() >= 300) debug(nullptr, "\n "); debug(nullptr, " " + type_name); debug(args, idx + 1, 0, path, std::forward<Tail>(T)...); } } // namespace debugger #line 30 "data_structure/dynamic_segment_tree.hpp" namespace uni { namespace internal { namespace dynamic_segment_tree_impl { // Thanks to: atcoder::segtree template<algebraic::internal::monoid Monoid, class NodeHandler> struct core { using size_type = internal::size_t; using operand = Monoid; struct node_type; using node_handler = NodeHandler::template handler<node_type>; using allocator_type = typename node_handler::allocator_type; using node_pointer = typename node_handler::node_pointer; protected: [[no_unique_address]] node_handler _node_handler; public: explicit core(const allocator_type& allocator = allocator_type()) noexcept(NO_EXCEPT) : _node_handler(allocator) {} core(const core&, const allocator_type& allocator) noexcept(NO_EXCEPT) : _node_handler(allocator) {} core(core&&, const allocator_type& allocator) noexcept(NO_EXCEPT) : _node_handler(allocator) {} struct node_type { size_type index; operand val, acc; node_pointer left = node_handler::nil, right = node_handler::nil; node_type() noexcept = default; node_type(const size_type _index, const operand& _val) noexcept(NO_EXCEPT) : index(_index), val(_val), acc(_val) {} }; protected: inline void pull(const node_pointer& tree) const noexcept(NO_EXCEPT) { tree->acc = tree->left->acc + tree->val + tree->right->acc; } inline void dispose(const node_pointer& tree) noexcept(NO_EXCEPT) { if(this->_node_handler.disposable(tree)) { this->dispose(tree->left); this->dispose(tree->right); this->_node_handler.dispose(tree); } } public: template<std::random_access_iterator I> node_pointer build(const size_type lower, const size_type upper, const size_type l, const size_type r, I first) noexcept(NO_EXCEPT) { const size_type middle = (lower + upper) >> 1; const auto itr = std::ranges::next(first, middle); if(middle < l || r <= middle) return node_handler::nil; node_pointer node = this->_node_handler.create(middle, *itr); node->left = this->build(lower, middle, l, middle, first); node->right = this->build(middle, upper, middle + 1, r, first); this->pull(node); return node; } template<std::random_access_iterator I, std::sentinel_for<I> S> node_pointer build(I first, S last) noexcept(NO_EXCEPT) { const size_type size = std::ranges::distance(first, last); return this->build(0, size, 0, size, first); } void set(node_pointer& tree, const size_type lower, const size_type upper, size_type pos, operand val) noexcept(NO_EXCEPT) { if(tree == node_handler::nil) { tree = this->_node_handler.create(pos, val); return; } tree = this->_node_handler.clone(tree); if(tree->index == pos) { tree->val = val; this->pull(tree); return; } const size_type middle = (lower + upper) >> 1; if(pos < middle) { if(tree->index < pos) std::swap(tree->index, pos), std::swap(tree->val, val); this->set(tree->left, lower, middle, pos, val); } else { if(pos < tree->index) std::swap(tree->index, pos), std::swap(tree->val, val); this->set(tree->right, middle, upper, pos, val); } this->pull(tree); } operand get(const node_pointer& tree, const size_type lower, const size_type upper, const size_type pos) const noexcept(NO_EXCEPT) { if(tree == node_handler::nil) return {}; if(tree->index == pos) return tree->val; const size_type middle = (lower + upper) >> 1; if(pos < middle) return this->get(tree->left, lower, middle, pos); else return this->get(tree->right, middle, upper, pos); } operand fold(const node_pointer& tree, const size_type lower, const size_type upper, const size_type l, const size_type r) const noexcept(NO_EXCEPT) { if(tree == node_handler::nil || upper <= l || r <= lower) return {}; if(l <= lower && upper <= r) return tree->acc; const size_type middle = (lower + upper) >> 1; operand val = this->fold(tree->left, lower, middle, l, r); if(l <= tree->index && tree->index < r) val = val + tree->val; return val + this->fold(tree->right, middle, upper, l, r); } void clear(const node_pointer& tree, const size_type lower, const size_type upper, const size_type l, const size_type r) const noexcept(NO_EXCEPT) { if(tree == node_handler::nil || upper <= l || r <= lower) return; if(l <= lower && upper <= r) { this->dispose(tree); tree = node_handler::nil; return; } const size_type middle = (lower + upper) >> 1; this->clear(tree->left, lower, middle, l, r); this->clear(tree->right, middle, upper, l, r); this->pull(tree); } template<class F> size_type max_right(const node_pointer& tree, const size_type lower, const size_type upper, const size_type l, F&& f, operand& acc) const { if(tree == node_handler::nil || upper <= l) return -1; if(f(acc + tree->acc)) { acc = acc + tree->acc; return -1; } const size_type middle = (lower + upper) >> 1; const size_type res = this->max_right(tree->left, lower, middle, l, f, acc); if(res != -1) return res; if(l <= tree->index && !f(acc = acc + tree->val)) return tree->index; return this->max_right(tree->right, middle, upper, l, std::forward<F>(f), acc); } template<class F> size_type min_left(const node_pointer& tree, const size_type lower, const size_type upper, const size_type r, F&& f, operand& acc) const { if(tree == node_handler::nil || r <= lower) return 0; if(f(tree->acc + acc)) { acc = tree->acc + acc; return 0; } const size_type middle = (lower + upper) >> 1; const size_type res = this->min_left(tree->right, middle, upper, r, f, acc); if(res != 0) return res; if(tree->index < r && !f(acc = tree->val + acc)) { return tree->index + 1; } return this->min_left(tree->left, lower, middle, r, std::forward<F>(f), acc); } public: debugger::debug_t dump_rich(const node_pointer& tree, const std::string prefix = " ", const int dir = 0) const { if(!tree || tree == node_handler::nil) return prefix + "\n"; const auto left = this->dump_rich(tree->left, prefix + (dir == 1 ? "| " : " "), -1); const auto here = prefix + "--+ " + debugger::dump(tree->index) + " : " + debugger::dump(tree->val) + "\n"; const auto right = this->dump_rich(tree->right, prefix + (dir == -1 ? "| " : " "), 1); return left + here + right; } debugger::debug_t _debug(const node_pointer tree) const { if(!tree || tree == node_handler::nil) return ""; return "(" + this->_debug(tree->left) + " " + debugger::dump(tree->index) + " : " + debugger::dump(tree->val) + this->_debug(tree->right) + ")"; } }; } // namespace dynamic_segment_tree_impl } // namespace internal template<class T, class = node_handlers::reusing<std::allocator<T>>> struct dynamic_segment_tree : internal::unconstructible {}; template<actions::internal::operatable_action Action, class NodeHandler> struct dynamic_segment_tree<Action, NodeHandler> : private internal::dynamic_segment_tree_impl::core<typename Action::operand, NodeHandler> { private: using core = typename internal::dynamic_segment_tree_impl::core<typename Action::operand, NodeHandler>; public: using value_type = typename core::operand; using size_type = typename core::size_type; using node_handler = typename core::node_handler; using allocator_type = typename core::allocator_type; using node_type = typename core::node_type; using node_pointer = typename core::node_pointer; private: inline auto _positivize_index(const size_type p) const noexcept(NO_EXCEPT) { return p < 0 ? this->_n + p : p; } size_type _n = 0; node_pointer _root = node_handler::nil; public: ~dynamic_segment_tree() { this->dispose(this->_root); } dynamic_segment_tree(const allocator_type& allocator = allocator_type()) noexcept(NO_EXCEPT) : core(allocator) {}; dynamic_segment_tree(const dynamic_segment_tree& source, const allocator_type& allocator) noexcept(NO_EXCEPT) : core(allocator), _n(source._n), _root(source._root) {} dynamic_segment_tree(dynamic_segment_tree&& source, const allocator_type& allocator) noexcept(NO_EXCEPT) : core(allocator), _n(source._n), _root(source._root) {} explicit dynamic_segment_tree(const size_type n, const allocator_type& allocator = allocator_type()) noexcept(NO_EXCEPT) : core(allocator), _n(n) {} template<std::convertible_to<value_type> T> dynamic_segment_tree(const std::initializer_list<T>& init_list, const allocator_type& allocator = allocator_type()) noexcept(NO_EXCEPT) : dynamic_segment_tree(init_list, allocator) {} template<std::input_iterator I, std::sized_sentinel_for<I> S> dynamic_segment_tree(I first, S last, const allocator_type& allocator = allocator_type()) noexcept(NO_EXCEPT) : dynamic_segment_tree(allocator) { this->assign(first, last); } template<std::ranges::input_range R> requires (!std::same_as<std::remove_cvref_t<R>, dynamic_segment_tree>) dynamic_segment_tree(R&& range, const allocator_type& allocator = allocator_type()) noexcept(NO_EXCEPT) : dynamic_segment_tree(ALL(range), allocator) {} inline auto clone() const noexcept(NO_EXCEPT) { return *this; } inline auto size() const noexcept(NO_EXCEPT) { return this->_n; } inline auto& clear() noexcept(NO_EXCEPT) { this->dispose(this->_root); this->_n = 0; this->_root = node_handler::nil; return *this; } template<std::convertible_to<value_type> T> inline auto& assign(const std::initializer_list<T>& init_list) noexcept(NO_EXCEPT) { return this->assign(init_list); } template<std::input_iterator I, std::sized_sentinel_for<I> S> inline auto& assign(I first, S last) noexcept(NO_EXCEPT) { this->_n = std::ranges::distance(first, last); this->_root = this->build(first, last); return *this; } template<std::ranges::input_range R> inline auto& assign(R&& range) noexcept(NO_EXCEPT) { return this->assign(ALL(range)); } inline auto& set(const size_type pos, value_type val) noexcept(NO_EXCEPT) { assert(pos < this->_n); this->core::set(this->_root, 0, this->_n, pos, val); return *this; } inline auto get(const size_type pos) const noexcept(NO_EXCEPT) { assert(pos < this->_n); return this->core::get(this->_root, 0, this->_n, pos); } inline auto& add(const size_type pos, const value_type& val) noexcept(NO_EXCEPT) { assert(0 <= pos && pos < this->_n); this->set(pos, this->get(pos) + val); return *this; } inline auto fold(const size_type l, const size_type r) const noexcept(NO_EXCEPT) { assert(0 <= l && l <= r && r <= this->_n); return this->core::fold(this->_root, 0, this->_n, l, r); } inline auto fold() const noexcept(NO_EXCEPT) { return this->_root->acc; } inline auto& clear(const size_type l, const size_type r) noexcept(NO_EXCEPT) { assert(0 <= l && l <= r && r <= this->_n); this->core::clear(this->_root, 0, this->_n, l, r); return *this; } template<bool (*f)(value_type)> inline auto max_right(const size_type l) const noexcept(NO_EXCEPT) { return this->max_right(l, [](const value_type& val) { return f(val); }); } template<class F> inline auto max_right(const size_type l, const F &f) const noexcept(NO_EXCEPT) { assert(0 <= l && l <= this->_n); value_type acc; assert(f(acc)); const auto res = this->core::max_right(this->_root, 0, this->_n, l, f, acc); return res == -1 ? this->_n : res; } template<bool (*f)(value_type)> inline auto min_left(const size_type r) const noexcept(NO_EXCEPT) { return this->min_left(r, [](const value_type& val) noexcept(NO_EXCEPT) { return f(val); }); } template<class F> inline auto min_left(const size_type r, const F &f) const noexcept(NO_EXCEPT) { assert(0 <= r && r <= this->_n); value_type acc; assert(f(acc)); return this->core::min_left(this->_root, 0, this->_n, r, f, acc); } struct point_reference : internal::point_reference<dynamic_segment_tree> { point_reference(dynamic_segment_tree *const super, const size_type p) noexcept(NO_EXCEPT) : internal::point_reference<dynamic_segment_tree>(super, super->_positivize_index(p)) { assert(0 <= this->_pos && this->_pos < this->_super->_n); } inline operator value_type() const noexcept(NO_EXCEPT) { return this->_super->get(this->_pos); } inline auto val() const noexcept(NO_EXCEPT) { return this->_super->get(this->_pos); } inline auto& operator=(const value_type& v) noexcept(NO_EXCEPT) { this->_super->set(this->_pos, v); return *this; } inline auto& operator+=(const value_type& v) noexcept(NO_EXCEPT) { this->_super->add(this->_pos, v); return *this; } }; struct range_reference : internal::range_reference<dynamic_segment_tree> { range_reference(dynamic_segment_tree *const super, const size_type l, const size_type r) noexcept(NO_EXCEPT) : internal::range_reference<dynamic_segment_tree>(super, super->_positivize_index(l), super->_positivize_index(r)) { assert(0 <= this->_begin && this->_begin <= this->_end && this->_end <= this->_super->_n); } inline auto fold() noexcept(NO_EXCEPT) { return this->_super->fold(this->_begin, this->_end); } }; inline auto operator[](const size_type p) noexcept(NO_EXCEPT) { return point_reference(this, p); } inline auto operator()(const size_type l, const size_type r) noexcept(NO_EXCEPT) { return range_reference(this, l, r); } public: struct iterator; protected: using iterator_interface = internal::container_iterator_interface<value_type, const dynamic_segment_tree, iterator>; public: struct iterator : iterator_interface { using iterator_interface::iterator_interface; }; inline auto begin() const noexcept(NO_EXCEPT) { return iterator(this, 0); } inline auto end() const noexcept(NO_EXCEPT) { return iterator(this, this->_n); } inline auto rbegin() const noexcept(NO_EXCEPT) { return std::make_reverse_iterator(this->end()); } inline auto rend() const noexcept(NO_EXCEPT) { return std::make_reverse_iterator(this->begin()); } using core::dump_rich; using core::_debug; debugger::debug_t dump_rich(const std::string prefix = " ") const { return "\n" + this->dump_rich(this->_root, prefix); } debugger::debug_t _debug() const { return "[ " + this->_debug(this->_root) + " ]"; } }; template<class Action, class Allocator = std::allocator<Action>> using persistent_dynamic_segment_tree = dynamic_segment_tree<Action, node_handlers::cloneable<Allocator>>; namespace pmr { template<class Action> using dynamic_segment_tree = uni::dynamic_segment_tree<Action, std::pmr::polymorphic_allocator<Action>>; template<class Action> using persistent_dynamic_segment_tree = uni::persistent_dynamic_segment_tree<Action, std::pmr::polymorphic_allocator<Action>>; }; // namespace pmr } // namespace uni #line 2 "data_structure/dynamic_sequence.hpp" #line 8 "data_structure/dynamic_sequence.hpp" #include <random> #line 12 "data_structure/dynamic_sequence.hpp" #line 15 "data_structure/dynamic_sequence.hpp" #line 2 "internal/uncopyable.hpp" namespace uni { namespace internal { struct uncopyable { uncopyable() noexcept {} uncopyable(const uncopyable&) = delete; uncopyable& operator=(const uncopyable&) = delete; }; } // namespace internal } // namespace uni #line 22 "data_structure/dynamic_sequence.hpp" #line 25 "data_structure/dynamic_sequence.hpp" #line 27 "data_structure/dynamic_sequence.hpp" #line 2 "data_structure/internal/basic_tree_concept.hpp" #line 6 "data_structure/internal/basic_tree_concept.hpp" #line 8 "data_structure/internal/basic_tree_concept.hpp" namespace uni { namespace internal { template<class T> concept basic_tree = std::default_initializable<T> && std::integral<typename T::size_type> && requires (T base, typename T::size_type key, typename T::node_pointer tree, const typename T::node_pointer const_tree) { base.split(const_tree, key, tree, tree); base.merge(tree, const_tree, const_tree); }; } // namespace internal } // namespace name #line 2 "data_structure/internal/tree_dumper.hpp" #line 5 "data_structure/internal/tree_dumper.hpp" #line 9 "data_structure/internal/tree_dumper.hpp" namespace uni { namespace internal { template<class Derived, class Core, bool LEAF_ONLY> struct dumpable_tree { private: using node_handler = Core::node_handler; using node_pointer = Core::node_pointer; using size_type = Core::size_type; inline auto _push(const node_pointer& tree) { return static_cast<Derived*>(this)->_impl.push(tree); // return static_cast<Derived*>(this)->push(tree); } public: debugger::debug_t dump_rich(node_pointer tree, const std::string prefix, const int dir, size_type& index) requires (!LEAF_ONLY) { if(!tree || tree == node_handler::nil) return prefix + "\n"; this->_push(tree); // debug(tree->priority >= tree->left->priority, tree->priority, tree->left->priority); // debug(tree->priority >= tree->right->priority, tree->priority, tree->right->priority); assert(tree->priority >= tree->left->priority); assert(tree->priority >= tree->right->priority); const auto left = this->dump_rich(tree->left, prefix + (dir == 1 ? "| " : " "), -1, index); const auto here = prefix + "--+ [" + debugger::dump(index) + ", " + debugger::dump(index + tree->length) + ") : " + "<" + debugger::dump(tree->priority) + "> " + debugger::dump(tree->data) + " [" + debugger::dump(tree->length) + "]\n"; index += tree->length; const auto right = this->dump_rich(tree->right, prefix + (dir == -1 ? "| " : " "), 1, index); return left + here + right; } debugger::debug_t dump_rich(node_pointer tree, const std::string prefix, const int dir, size_type& index) requires ( LEAF_ONLY && requires { typename Core::node_colors; } ) { if(!tree || tree == node_handler::nil) return prefix + "\n"; this->_push(tree); const auto left = this->dump_rich(tree->left, prefix + (dir == 1 ? "| " : " "), -1, index); const auto right = this->dump_rich(tree->right, prefix + (dir == -1 ? "| " : " "), 1, index); const auto color = tree->color == Core::node_colors::BLACK ? "<->" : "<+>"; const auto here = [&]() -> std::string { if(tree->is_leaf()) { index += tree->size; return prefix + "--+ [" + debugger::dump(index - tree->size) + ", " + debugger::dump(index) + ") : " + debugger::COLOR_STRING + color + debugger::COLOR_INIT + " " + debugger::dump(tree->data) + " [" + debugger::dump(tree->size) + "]\n"; } return ""; }(); return left + here + right; } inline debugger::debug_t dump_rich(const node_pointer& tree, const std::string prefix = " ", const int dir = 0) { size_type index = 0; return this->dump_rich(tree, prefix, dir, index); } debugger::debug_t _debug(node_pointer tree) requires (!LEAF_ONLY) { if(!tree || tree == node_handler::nil) return ""; this->_push(tree); return "(" + this->_debug(tree->left) + " " + debugger::dump(tree->data) + " [" + debugger::dump(tree->length) + "] " + this->_debug(tree->right) + ")"; } debugger::debug_t _debug(node_pointer tree) requires LEAF_ONLY { if(!tree || tree == node_handler::nil) return ""; this->_push(tree); return "(" + this->_debug(tree->left) + " " + ( tree->is_leaf() ? debugger::dump(tree->data) + " [" + debugger::dump(tree->size) + "] " : "" ) + this->_debug(tree->right) + ")"; } }; } // namespace internal } // namespace uni #line 2 "data_structure/internal/dynamic_tree.hpp" #line 6 "data_structure/internal/dynamic_tree.hpp" #line 9 "data_structure/internal/dynamic_tree.hpp" #line 12 "data_structure/internal/dynamic_tree.hpp" #line 15 "data_structure/internal/dynamic_tree.hpp" #line 17 "data_structure/internal/dynamic_tree.hpp" namespace uni { namespace internal { namespace dynamic_tree_impl { namespace internal { template<class T> consteval auto to_val() { if constexpr(actions::internal::operatable_action<T>) return typename T::operand{}; else return T{}; } template<class T> consteval auto to_acc() { if constexpr(actions::internal::operatable_action<T>) return typename T::operand{}; else return dummy{}; } template<class T> consteval auto to_lazy() { if constexpr(actions::internal::effective_action<T>) return typename T::operation{}; else return dummy{}; } template<class T, bool LEAF_ONLY, bool MAY_BE_LAZY = true> struct data_type { using val_t = decltype(to_val<T>()); using acc_t = decltype(to_acc<T>()); using lazy_t = decltype(to_lazy<T>()); val_t val; [[no_unique_address]] acc_t acc; [[no_unique_address]] std::conditional_t<MAY_BE_LAZY, lazy_t, dummy> lazy; bool rev = false; data_type() noexcept = default; data_type(const val_t& _val) noexcept(NO_EXCEPT) : val(_val) {} auto _debug() const { return this->val; } friend bool operator==(const data_type& lhs, const data_type& rhs) noexcept(NO_EXCEPT) { return lhs.val == rhs.val; } friend auto operator<=>(const data_type& lhs, const data_type& rhs) noexcept(NO_EXCEPT) { return lhs.val <=> rhs.val; } }; template<class ActionOrValue, class Derived, class Context> struct basic_core : Context::substance<Derived, internal::data_type<ActionOrValue, Context::LEAF_ONLY>> { using data_type = internal::data_type<ActionOrValue, Context::LEAF_ONLY>; private: using base = typename Context::substance<Derived, data_type>; static_assert(basic_tree<base>); public: using base::base; using node_handler = typename base::node_handler; using node_pointer = typename base::node_pointer; using size_type = typename base::size_type; using operand = data_type::val_t; using operation = data_type::lazy_t; inline auto val(const node_pointer& node) const noexcept(NO_EXCEPT) { if constexpr(Context::LEAF_ONLY) { if(node->is_leaf()) return node->size * node->data.val; return node->data.val; } else { return node->data.acc; } } using base::split; using base::merge; inline void split(const node_pointer tree, const size_type l, const size_type r, node_pointer& t0, node_pointer& t1, node_pointer& t2) noexcept(NO_EXCEPT) { // See: https://twitter.com/KakurenboUni/status/1784576244321018209 this->split(tree, l, t0, t1); this->split(t1, r - l, t1, t2); } inline void split( const node_pointer tree, const size_type l, const size_type m, const size_type r, node_pointer& t0, node_pointer& t1, node_pointer& t2, node_pointer& t3 ) noexcept(NO_EXCEPT) { // See: https://twitter.com/KakurenboUni/status/1784576244321018209 this->split(tree, l, m, t0, t1, t2); this->split(t2, r - m, t2, t3); } inline void merge(node_pointer& tree, node_pointer t0, const node_pointer t1, const node_pointer t2) noexcept(NO_EXCEPT) { this->merge(t0, t0, t1); this->merge(tree, t0, t2); } void erase(node_pointer& tree, const size_type l, const size_type r) noexcept(NO_EXCEPT) { assert(l <= r); node_pointer t0, t1, t2; this->split(tree, l, r, t0, t1, t2); this->dispose(t1); this->merge(tree, t0, t2); } auto pop(node_pointer& tree, const size_type pos, const size_type count = 1) noexcept(NO_EXCEPT) { assert(0 <= count); if(count == 0) return operand{}; node_pointer t0, t1, t2; this->split(tree, pos, pos + count, t0, t1, t2); const auto res = this->val(t1); this->dispose(t1); this->merge(tree, t0, t2); return res; } operand get(node_pointer tree, const size_type pos) noexcept(NO_EXCEPT) { if(tree == node_handler::nil || pos < 0 || pos >= tree->size) return {}; this->base::push(tree); const auto lower_bound = tree->left->size; const auto upper_bound = tree->size - tree->right->size; if(pos < lower_bound) { return this->get(tree->left, pos); } else if(pos >= upper_bound) { return this->get(tree->right, pos - upper_bound); } else { return tree->data.val; } } template<std::forward_iterator I> requires std::output_iterator<I, operand> void enumerate(node_pointer tree, I& itr) noexcept(NO_EXCEPT) { if(tree == node_handler::nil) return; this->base::push(tree); this->enumerate(tree->left, itr); if constexpr(Context::LEAF_ONLY) { if(tree->is_leaf()) { REP(tree->size) *(itr++) = tree->data.val; } } else { REP(tree->length) *(itr++) = tree->data.val; } this->enumerate(tree->right, itr); } auto fold(node_pointer& tree, size_type l, size_type r) noexcept(NO_EXCEPT) { assert(l <= r); if(l == r) return operand{}; node_pointer t0, t1, t2; this->split(tree, l, r, t0, t1, t2); const operand res = this->val(t1); this->merge(tree, t0, t1, t2); return res; } }; } // namespace internal } // namespace dynamic_tree_impl } // namespace internal } // namespace uni #line 31 "data_structure/dynamic_sequence.hpp" #line 2 "data_structure/treap.hpp" #line 13 "data_structure/treap.hpp" #line 2 "utility/functional.hpp" #line 8 "utility/functional.hpp" #line 11 "utility/functional.hpp" #line 13 "utility/functional.hpp" #line 16 "utility/functional.hpp" #line 18 "utility/functional.hpp" namespace uni { namespace internal { template<class T> constexpr T plus(const T a, const T b) noexcept(NO_EXCEPT) { return std::plus<T>{}(a, b); } template<class T> constexpr T minus(const T a, const T b) noexcept(NO_EXCEPT) { return std::minus<T>{}(a, b); } template<class T> constexpr T bit_xor(const T a, const T b) noexcept(NO_EXCEPT) { return a xor b; } } // namespace internal template<class T, class U> inline auto to_optional_if_equal(const T& v, const U& ill) noexcept(NO_EXCEPT) -> std::optional<T> { return v == ill ? std::optional<T>{} : std::optional<T>(v); } template<class T, class U> inline auto to_optional_if_over(const T& v, const U& ill) noexcept(NO_EXCEPT) -> std::optional<T> { return v > ill ? std::optional<T>{} : std::optional<T>(v); } template<class T, class U> inline auto to_optional_if_or_over(const T& v, const U& ill) noexcept(NO_EXCEPT) -> std::optional<T> { return v >= ill ? std::optional<T>{} : std::optional<T>(v); } template<class T, class U> inline auto to_optional_if_under(const T& v, const U& ill) noexcept(NO_EXCEPT) -> std::optional<T> { return v < ill ? std::optional<T>{} : std::optional<T>(v); } template<class T, class U> inline auto to_optional_if_or_under(const T& v, const U& ill) noexcept(NO_EXCEPT) -> std::optional<T> { return v <= ill ? std::optional<T>{} : std::optional<T>(v); } template<class T, class F> inline auto to_optional_if(const T& v, F&& f) noexcept(NO_EXCEPT) -> decltype(f(v), std::optional<T>{}){ return f(v) ? std::optional<T>{} : std::optional<T>(v); } template<class T, class U> inline bool chmin(T &a, const U& b) noexcept(NO_EXCEPT) { return (a>b ? a=b, true : false); } template<class T, class U> inline bool chmax(T &a, const U& b) noexcept(NO_EXCEPT) { return (a<b ? a=b, true : false); } template<class T, class... Ts> inline bool chmin(T &a, Ts... b) noexcept(NO_EXCEPT) { return chmin(a, min(b...)); } template<class T, class... Ts> inline bool chmax(T &a, Ts... b) noexcept(NO_EXCEPT) { return chmax(a, max(b...)); } template<class... Ts> inline constexpr std::common_type_t<Ts...> tuple_sum(const std::tuple<Ts...>& tuple, const std::common_type_t<Ts...>& base = std::common_type_t<Ts...>()) noexcept(NO_EXCEPT) { std::common_type_t<Ts...> res = base; tuple_for_each(tuple, [&](const auto& v) constexpr { res += v; }); return res; } template<class... Ts> inline constexpr std::common_type_t<Ts...> min_element(const std::tuple<Ts...>& tuple) noexcept(NO_EXCEPT) { return std::apply([&](auto&&... v) constexpr { return min(v...); }, tuple); } template<class... Ts> inline constexpr std::common_type_t<Ts...> max_element(const std::tuple<Ts...>& tuple) noexcept(NO_EXCEPT) {; return std::apply([&](auto&&... v) constexpr { return max(v...); }, tuple); } template<interval_notation INTERVAL, class T0, class T1, class T2> inline constexpr bool in_range(const T0& x, const T1& l, const T2& r) noexcept(NO_EXCEPT) { if constexpr(INTERVAL == interval_notation::right_open) return l <= x and x < r; else if constexpr(INTERVAL == interval_notation::left_open) return l < x and x <= r; else if constexpr(INTERVAL == interval_notation::open) return l < x and x < r; return l <= x and x <= r; } template<class F, class Tuple> constexpr void tuple_for_each(F&& f, Tuple&& tuple) { std::apply( [&]<class... Ts>(Ts&&... elems) { (std::invoke(f, std::forward<Ts>(elems)), ...); }, std::forward<Tuple>(tuple) ); } template<class F, class Tuple> constexpr auto tuple_transform(F&& f, Tuple&& tuple) { return std::apply( [&]<class...Ts>(Ts&&... elems) { return internal::tuple_or_pair_t<std::invoke_result_t<F&,Ts>...>( std::invoke(f, std::forward<Ts>(elems))... ); }, std::forward<Tuple>(tuple) ); } } // namespace uni #line 17 "data_structure/treap.hpp" #line 23 "data_structure/treap.hpp" #line 25 "data_structure/treap.hpp" #line 27 "data_structure/treap.hpp" #line 2 "random/engine.hpp" #line 7 "random/engine.hpp" #line 2 "template/debug.hpp" #ifdef LOCAL_JUDGE #define DEBUGGER_ENABLED #define DEBUGGER_COLORED_OUTPUT 1 #endif #line 13 "template/debug.hpp" #ifdef DEBUGGER_ENABLED #define debug(...) debugger::debug(debugger::split(#__VA_ARGS__), 0, __LINE__, __FILE__, __VA_ARGS__) #define debug_(...) do { const std::string file = __FILE__; debugger::raw(nullptr, debugger::COLOR_LINE + file.substr(file.find_last_of("/") + 1) + " #" + std::to_string(__LINE__) + debugger::COLOR_INIT + " "); debugger::raw(__VA_ARGS__); debugger::raw(nullptr, debugger::COLOR_INIT + "\n"); } while(0); #define DEBUG if constexpr(true) #else #define debug(...) ({ ; }) #define debug_(...) ({ ; }) #define DEBUG if constexpr(false) #endif #line 9 "random/engine.hpp" #line 12 "random/engine.hpp" #line 14 "random/engine.hpp" #line 2 "hash/general_hasher.hpp" #line 7 "hash/general_hasher.hpp" #line 11 "hash/general_hasher.hpp" #line 13 "hash/general_hasher.hpp" namespace uni { template<std::unsigned_integral R, std::integral T> constexpr R shrink(T x) noexcept(NO_EXCEPT) { constexpr int DIGITS_R = std::numeric_limits<R>::digits; constexpr int DIGITS_T = std::numeric_limits<R>::digits; REPD(digits, DIGITS_R, DIGITS_T, DIGITS_R) { x = (x >> digits) ^ uni::lower_bits(x, digits); } return x; } // Thanks to: https://gist.github.com/badboy/6267743 template<class T> constexpr u32 hash32(T x) { if constexpr(std::integral<T>) { if constexpr(std::signed_integral<T>) return hash32(to_unsigned(x)); constexpr int DIGITS_T = std::numeric_limits<T>::digits; if constexpr(DIGITS_T <= 32) { auto h = static_cast<u32>(x); h = ~h + (h << 15); h ^= (h >> 12); h += (h << 2); h ^= (h >> 4); h *= 2057; h ^= (h >> 16); return h; } else if constexpr(DIGITS_T <= 64) { auto h = static_cast<u64>(x); h = (~h) + (h << 18); h ^= (h >> 31); h *= 21; h ^= (h >> 11); h += (h << 6); h ^= (h >> 22); return static_cast<u32>(h); } else { return hash32(hash64(x)); } } else { return hash32(std::hash<T>{}(x)); } } template<class T> constexpr u64 hash64(T x) { if constexpr(std::integral<T>) { if constexpr(std::signed_integral<T>) return hash64(to_unsigned(x)); constexpr int DIGITS_T = std::numeric_limits<T>::digits; if constexpr(DIGITS_T <= 64) { auto h = static_cast<u64>(x); h = (~h) + (h << 21); h ^= (h >> 24); h *= 265; h ^= (h >> 14); h *= 21; h ^= (h >> 28); h += h << 31; return h; } else { return hash64(shrink<u64>(x)); } } else { return hash64(std::hash<T>{}(x)); } } template<class T> struct hash { inline constexpr auto operator()(const T& key) const noexcept(NO_EXCEPT) { return static_cast<std::size_t>(uni::hash64(key)); } }; } // namespace uni #line 16 "random/engine.hpp" // Thanks to: https://prng.di.unimi.it/ namespace uni { namespace internal { template<class Derived, class ResultType> struct random_engine { using result_type = ResultType; static constexpr result_type MIN = std::numeric_limits<result_type>::min(); static constexpr result_type MAX = std::numeric_limits<result_type>::max(); static constexpr result_type min() noexcept(NO_EXCEPT) { return MIN; } static constexpr result_type max() noexcept(NO_EXCEPT) { return MAX; } template<std::unsigned_integral T = result_type> constexpr random_engine(const T _seed = 0) noexcept(NO_EXCEPT) { static_cast<Derived*>(this)->seed(_seed); }; inline constexpr result_type operator()() noexcept(NO_EXCEPT) { return static_cast<Derived*>(this)->next(); } }; const i64 INTERNAL_RANDOM_GENERATOR_ID = -(1UL << 60); }; // namespace internal constexpr float to_float(const std::uint32_t x) noexcept(NO_EXCEPT) { return float(x >> 8) * 0x1.0p-24f; } constexpr double to_double(const std::uint64_t x) noexcept(NO_EXCEPT) { return double(x >> 11) * 0x1.0p-53; } struct mulberry32 : internal::random_engine<mulberry32, std::uint32_t> { using internal::random_engine<mulberry32, std::uint32_t>::random_engine; private: std::uint32_t _x; public: template<std::unsigned_integral T> inline constexpr void seed(const T x) noexcept(NO_EXCEPT) { this->_x = x; } inline constexpr std::uint32_t next() noexcept(NO_EXCEPT) { std::uint32_t z = (this->_x += 0x6D2B79F5U); z = (z ^ (z >> 15)) * (z | 1U); z ^= z + (z ^ (z >> 7)) * (z | 61U); return static_cast<std::uint32_t>(z ^ (z >> 14)); } }; struct splitmix64 : internal::random_engine<splitmix64, std::uint64_t> { using internal::random_engine<splitmix64, std::uint64_t>::random_engine; private: std::uint64_t _x; public: template<std::unsigned_integral T> inline constexpr void seed(const T x) noexcept(NO_EXCEPT) { this->_x = x; } inline constexpr std::uint64_t next() noexcept(NO_EXCEPT) { std::uint64_t z = (this->_x += 0x9e3779b97f4a7c15); z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9; z = (z ^ (z >> 27)) * 0x94d049bb133111eb; return z ^ (z >> 31); } }; // xoroshiro64** struct xoroshiro64ss : internal::random_engine<xoroshiro64ss, std::uint32_t> { using internal::random_engine<xoroshiro64ss, std::uint32_t>::random_engine; private: std::uint32_t s[2]; public: template<std::unsigned_integral T> inline constexpr void seed(const T _seed) noexcept(NO_EXCEPT) { mulberry32 gen32(hash32(_seed)); this->s[0] = gen32(); this->s[1] = gen32(); } inline constexpr std::uint32_t next() noexcept(NO_EXCEPT) { const std::uint32_t s0 = this->s[0]; std::uint32_t s1 = this->s[1]; const std::uint32_t res = std::rotl(s0 * 0x9E3779BBU, 5) * 5; s1 ^= s0; this->s[0] = std::rotl(s0, 26) ^ s1 ^ (s1 << 9); this->s[1] = std::rotl(s1, 13); return res; } }; struct xoroshiro128ss : internal::random_engine<xoroshiro128ss, std::uint64_t> { using internal::random_engine<xoroshiro128ss, std::uint64_t>::random_engine; private: std::uint64_t s[2]; public: template<std::unsigned_integral T> inline constexpr void seed(const T _seed) noexcept(NO_EXCEPT) { splitmix64 gen64(hash32(_seed)); this->s[0] = gen64(); this->s[1] = gen64(); } inline constexpr std::uint64_t next() noexcept(NO_EXCEPT) { const uint64_t s0 = this->s[0]; uint64_t s1 = this->s[1]; const uint64_t res = std::rotl(s0 * 5, 7) * 9; s1 ^= s0; this->s[0] = std::rotl(s0, 24) ^ s1 ^ (s1 << 16); this->s[1] = std::rotl(s1, 37); return res; } }; struct xoroshiro128pp : internal::random_engine<xoroshiro128pp, std::uint64_t> { using internal::random_engine<xoroshiro128pp, std::uint64_t>::random_engine; private: std::uint64_t s[2]; public: template<std::unsigned_integral T> inline constexpr void seed(const T _seed) noexcept(NO_EXCEPT) { splitmix64 gen64(hash32(_seed)); this->s[0] = gen64(); this->s[1] = gen64(); } inline constexpr std::uint64_t next() noexcept(NO_EXCEPT) { const std::uint64_t s0 = this->s[0]; std::uint64_t s1 = this->s[1]; const std::uint64_t res = std::rotl(s0 + s1, 17) + s0; s1 ^= s0; this->s[0] = std::rotl(s0, 49) ^ s1 ^ (s1 << 21); // a, b this->s[1] = std::rotl(s1, 28); // c return res; } }; // xoroshiro128+ struct xoroshiro128p : internal::random_engine<xoroshiro128p, std::uint64_t> { using internal::random_engine<xoroshiro128p, std::uint64_t>::random_engine; private: std::uint64_t s[2]; public: template<std::unsigned_integral T> inline constexpr void seed(const T _seed) noexcept(NO_EXCEPT) { splitmix64 gen64(hash64(_seed)); this->s[0] = gen64(); this->s[1] = gen64(); } inline constexpr std::uint64_t next() noexcept(NO_EXCEPT) { const std::uint64_t s0 = this->s[0]; std::uint64_t s1 = this->s[1]; const std::uint64_t res = s0 + s1; s1 ^= s0; this->s[0] = std::rotl(s0, 24) ^ s1 ^ (s1 << 16); this->s[1] = std::rotl(s1, 37); return res; } }; struct xoroshiro64s : internal::random_engine<xoroshiro64s, std::uint32_t> { using internal::random_engine<xoroshiro64s, std::uint32_t>::random_engine; private: std::uint32_t s[2]; public: template<std::unsigned_integral T> inline constexpr void seed(const T _seed) noexcept(NO_EXCEPT) { mulberry32 gen32(hash32(_seed)); this->s[0] = gen32(); this->s[1] = gen32(); } inline constexpr std::uint32_t next() noexcept(NO_EXCEPT) { const std::uint32_t s0 = s[0]; std::uint32_t s1 = s[1]; const std::uint32_t res = s0 * 0x9E3779BB; s1 ^= s0; s[0] = std::rotl(s0, 26) ^ s1 ^ (s1 << 9); s[1] = std::rotl(s1, 13); return res; } }; using random_engine_32bit = xoroshiro64ss; using random_engine_64bit = xoroshiro128pp; using random_engine_float = xoroshiro64s; using random_engine_double = xoroshiro128p; random_engine_32bit randi32; random_engine_64bit randi64; float randf() { static random_engine_float gen; return to_float(gen()); } double randd() { static random_engine_double gen; return to_double(gen()); } } // namespace uni #line 29 "data_structure/treap.hpp" #line 32 "data_structure/treap.hpp" namespace uni { namespace internal { // Thanks to: https://github.com/xuzijian629/library2/blob/master/treap/implicit_treap.cpp template<class Allocator, class Derived, std::integral SizeType, class ValueType, i64 Id> struct treap_impl : private uncopyable { using size_type = SizeType; using value_type = ValueType; struct node_type; using node_handler = typename uni::node_handlers::reusing<Allocator>::template handler<node_type>; using allocator_type = typename node_handler::allocator_type; using node_pointer = typename node_handler::node_pointer; private: using derived = Derived; inline auto* _derived() noexcept(NO_EXCEPT) { return static_cast<derived*>(this); } inline const auto* _derived() const noexcept(NO_EXCEPT) { return static_cast<const derived*>(this); } [[no_unique_address]] node_handler _node_handler; static inline random_engine_32bit _rand; using priority_type = random_engine_32bit::result_type; public: void pull(const node_pointer tree) noexcept(NO_EXCEPT) { if(tree == node_handler::nil) return; tree->size = tree->left->size + tree->length + tree->right->size; this->_derived()->pull(tree); } void push(const node_pointer tree) noexcept(NO_EXCEPT) { if(tree == node_handler::nil) return; this->_derived()->push(tree); } node_pointer create(const value_type& val, const size_type size) noexcept(NO_EXCEPT) { if(size == 0) return node_handler::nil; return this->_node_handler.create(val, size); } void dispose(node_pointer tree) noexcept(NO_EXCEPT) { if(this->_node_handler.disposable(tree)) { this->dispose(tree->left); this->dispose(tree->right); this->_node_handler.dispose(tree); } } template<class... Args> inline void constexpr clone(Args&&...) const noexcept {} private: void _rotate_right(node_pointer& tree) noexcept(NO_EXCEPT) { // push ommitted auto t = tree->left; tree->left = t->right; this->pull(tree); t->right = tree; this->pull(t); tree = std::move(t); } void _rectify(const node_pointer tree) const noexcept(NO_EXCEPT) { if(tree->size == 0) return; std::vector<priority_type> priorities(tree->size); std::ranges::generate(priorities, treap_impl::_rand); std::ranges::make_heap(priorities); std::queue<node_pointer> queue; queue.push(tree); auto itr = std::ranges::begin(priorities); while(!queue.empty()) { node_pointer node = queue.front(); queue.pop(); node->priority = *(itr++); if(node->left != node_handler::nil) queue.push(node->left); if(node->right != node_handler::nil) queue.push(node->right); } } template<std::random_access_iterator I, std::sized_sentinel_for<I> S> requires std::constructible_from<value_type, std::iter_value_t<I>> node_pointer _build(I first, S last) noexcept(NO_EXCEPT) { if(first == last) return node_handler::nil; const auto length = std::ranges::distance(first, last); const auto middle = std::ranges::next(first, length >> 1); node_pointer tree = this->create(value_type{ *middle }, 1); tree->left = this->_build(first, middle); tree->right = this->_build(std::ranges::next(middle), last); this->pull(tree); return tree; } template<std::random_access_iterator I, std::sized_sentinel_for<I> S> requires std::constructible_from<value_type, typename std::iter_value_t<I>::first_type> && std::integral<typename std::iter_value_t<I>::second_type> node_pointer _build(I first, S last) noexcept(NO_EXCEPT) { if(first == last) return node_handler::nil; const auto length = std::ranges::distance(first, last); const auto middle = std::ranges::next(first, length >> 1); node_pointer tree = this->create(value_type{ middle->first }, middle->second ); tree->left = this->_build(first, middle); tree->right = this->_build(std::ranges::next(middle), last); this->pull(tree); return tree; } void _split(node_pointer tree, const size_type pos, node_pointer& left, node_pointer& right) noexcept(NO_EXCEPT) { if(tree == node_handler::nil) { left = right = node_handler::nil; return; } this->push(tree); const auto lower_bound = tree->left->size; const auto upper_bound = tree->size - tree->right->size; if(pos <= lower_bound) { node_pointer t; this->split(tree->left, pos, left, t); tree->left = t; if(tree->priority < t->priority) this->_rotate_right(tree); right = std::move(tree); this->pull(right); } else if(pos >= upper_bound) { this->split(tree->right, pos - upper_bound, tree->right, right); left = std::move(tree); this->pull(left); } else { tree->length = pos - lower_bound; this->merge(tree->right, this->create(tree->data, upper_bound - pos), tree->right); this->split(tree->right, 0, tree->right, right), left = std::move(tree); this->pull(left); } } public: explicit treap_impl(const allocator_type& allocator = allocator_type()) noexcept(NO_EXCEPT) : _node_handler(allocator) {} template<std::random_access_iterator I, std::sized_sentinel_for<I> S> node_pointer build(I first, S last) { const auto tree = this->_build(first, last); this->_rectify(tree); return tree; } struct node_type { priority_type priority = std::numeric_limits<priority_type>::lowest(); node_pointer left = node_handler::nil, right = node_handler::nil; size_type length, size; [[no_unique_address]] value_type data; node_type() noexcept = default; node_type(const value_type& _data, const size_type _size) noexcept(NO_EXCEPT) : priority(treap_impl::_rand()), length(_size), size(_size), data(_data) {} }; template<bool STRICT = false, bool RETURN_EXISTENCE = false> void split(const node_pointer tree, const value_type& val, node_pointer& left, node_pointer& right, bool* exist = nullptr) noexcept(NO_EXCEPT) { if(tree == node_handler::nil) { left = right = node_handler::nil; return; } this->push(tree); if constexpr(RETURN_EXISTENCE) *exist |= val == tree->data; if(val < tree->data || (!STRICT && val == tree->data)) { this->template split<STRICT, RETURN_EXISTENCE>(tree->left, val, left, tree->left, exist); right = std::move(tree); this->pull(right); } else { this->template split<STRICT, RETURN_EXISTENCE>(tree->right, val, tree->right, right, exist); left = std::move(tree); this->pull(left); } } void split(const node_pointer tree, const size_type pos, node_pointer& left, node_pointer& right) noexcept(NO_EXCEPT) { if(pos <= 0) { left = node_handler::nil; this->merge(right, this->create(value_type{}, -pos), std::move(tree)); } else if(tree->size <= pos) { right = node_handler::nil; this->merge(left, std::move(tree), this->create(value_type{}, pos - tree->size)); } else { this->_split(std::move(tree), pos, left, right); } } void merge(node_pointer& tree, const node_pointer left, const node_pointer right) noexcept(NO_EXCEPT) { this->push(left); this->push(right); if(left == node_handler::nil || right == node_handler::nil) { tree = left == node_handler::nil ? right : left; } else if(left->priority < right->priority) { this->merge(right->left, left, right->left), tree = std::move(right); } else { this->merge(left->right, left->right, right), tree = std::move(left); } this->pull(tree); } }; } // namespace internal template<std::integral SizeType = i64, class Allocator = std::allocator<SizeType>, i64 Id = -1> struct treap_context { static constexpr bool LEAF_ONLY = false; template<class Derived, class ValueType = internal::dummy> using substance = internal::treap_impl<Allocator, Derived, SizeType, ValueType, Id>; }; namespace pmr { template<std::integral SizeType = i64, i64 Id = -1> using treap_context = uni::treap_context<SizeType, std::pmr::polymorphic_allocator<SizeType>, Id>; } // namespace pmr } // namespace uni #line 33 "data_structure/dynamic_sequence.hpp" #line 35 "data_structure/dynamic_sequence.hpp" #line 38 "data_structure/dynamic_sequence.hpp" #line 40 "data_structure/dynamic_sequence.hpp" namespace uni { namespace internal { namespace dynamic_tree_impl { template<class ActionOrValue, class Context> struct sequence_core : internal::basic_core<ActionOrValue, sequence_core<ActionOrValue, Context>, Context> // , // dumpable_tree< // sequence_core<ActionOrValue, Context>, // internal::basic_core<ActionOrValue, sequence_core<ActionOrValue, Context>, Context>, // Context::LEAF_ONLY // > { private: using base = typename internal::basic_core<ActionOrValue, sequence_core, Context>; public: static constexpr bool ACC = actions::internal::operatable_action<ActionOrValue>; static constexpr bool LAZY = actions::internal::effective_action<ActionOrValue>; using base::base; using data_type = base::data_type; using operand = base::operand; using operation = base::operation; using node_handler = typename base::node_handler; using node_type = typename base::node_type; using node_pointer = typename base::node_pointer; using size_type = typename base::size_type; inline void pull(const node_pointer& tree) const noexcept(NO_EXCEPT) { if constexpr(ACC) { if constexpr(Context::LEAF_ONLY) { tree->data.val = this->val(tree->left) + this->val(tree->right); } else { tree->data.acc = tree->left->data.acc + tree->length * tree->data.val + tree->right->data.acc; } } } inline void push(const node_pointer& tree) noexcept(NO_EXCEPT) { if(tree->data.rev) { tree->data.rev = false; std::swap(tree->left, tree->right); if(tree->left != node_handler::nil) { this->clone(tree->left); tree->left->data.rev ^= 1; } if(tree->right != node_handler::nil) { this->clone(tree->right); tree->right->data.rev ^= 1; } } if constexpr(LAZY) { if(tree->data.lazy != operation{}) { if constexpr(Context::LEAF_ONLY) { if(tree->left != node_handler::nil) { this->clone(tree->left); if(tree->left->is_leaf()) { tree->left->data.val = ActionOrValue::mapping(tree->data.lazy, tree->left->data.val); } else { tree->left->data.lazy = tree->data.lazy + tree->left->data.lazy; tree->left->data.val = ActionOrValue::mapping(ActionOrValue::power(tree->data.lazy, tree->left->size), tree->left->data.val); } } if(tree->right != node_handler::nil) { this->clone(tree->right); if(tree->right->is_leaf()) { tree->right->data.val = ActionOrValue::mapping(tree->data.lazy, tree->right->data.val); } else { tree->right->data.lazy = tree->data.lazy + tree->right->data.lazy; tree->right->data.val = ActionOrValue::mapping(ActionOrValue::power(tree->data.lazy, tree->right->size), tree->right->data.val); } } } else { if(tree->left != node_handler::nil) { tree->left->data.lazy = tree->data.lazy + tree->left->data.lazy; tree->left->data.acc = ActionOrValue::mapping(ActionOrValue::power(tree->data.lazy, tree->left->size), tree->left->data.acc); } if(tree->right != node_handler::nil) { tree->right->data.lazy = tree->data.lazy + tree->right->data.lazy; tree->right->data.acc = ActionOrValue::mapping(ActionOrValue::power(tree->data.lazy, tree->right->size), tree->right->data.acc); } } tree->data.val = ActionOrValue::mapping(tree->data.lazy, tree->data.val); tree->data.lazy = operation{}; } } } inline void update(node_pointer& tree) noexcept(NO_EXCEPT) { if(tree == node_handler::nil) return; this->base::push(tree); this->base::pull(tree); } void insert(node_pointer& tree, const size_type pos, const operand& val, const size_type count = 1) noexcept(NO_EXCEPT) { assert(count >= 0); if(count == 0) return; node_pointer t0, t1; this->split(tree, pos, t0, t1); this->merge(tree, t0, this->create(val, count), t1); } template<std::input_iterator I, std::sized_sentinel_for<I> S> void insert(node_pointer& tree, const size_type pos, I first, S last) noexcept(NO_EXCEPT) { node_pointer t0, t1; this->split(tree, pos, t0, t1); this->merge(tree, t0, this->build(first, last), t1); } void add(node_pointer& tree, const size_type pos, const operand& val) noexcept(NO_EXCEPT) { node_pointer t0, t1, t2; this->split(tree, pos, t0, t1); this->split(t1, 1, t1, t2); const auto prev = this->val(t1); this->dispose(t1); t1 = this->create(data_type{ prev + val }, 1); this->merge(tree, t0, t1, t2); } void fill(node_pointer& tree, const size_type l, const size_type r, const operand& val) noexcept(NO_EXCEPT) { assert(l <= r); if(l == r) return; node_pointer t0, t1, t2; this->split(tree, l, r, t0, t1, t2); // this->split(tree, l, r, t0, t1, t2); // this->split(tree, l, t0, t1); // debug(this->dump_rich(t0), this->dump_rich(t1)); // this->split(t1, r - l, t1, t2); // debug(this->dump_rich(t1), this->dump_rich(t2)); this->dispose(t1); t1 = this->create(val, r - l); this->merge(tree, t0, t1, t2); // this->merge(t0, t0, t1); // debug(this->dump_rich(t0)); // this->merge(tree, t0, t2); // debug(this->dump_rich(tree)); } template<std::input_iterator I, std::sized_sentinel_for<I> S> void fill(node_pointer& tree, const size_type pos, I first, S last) noexcept(NO_EXCEPT) { node_pointer t0, t1, t2; this->split(tree, pos, pos + std::ranges::distance(first, last), t0, t1, t2); this->dispose(t1); this->merge(tree, t0, this->build(first, last), t2); } void apply(node_pointer& tree, const size_type l, const size_type r, const operation& val) noexcept(NO_EXCEPT) requires LAZY { assert(l <= r); if(l == r) return; node_pointer t0, t1, t2; this->split(tree, l, r, t0, t1, t2); if(t1 == node_handler::nil) t1 = this->create(data_type{}, r - l); t1->data.lazy = val + t1->data.lazy; this->merge(tree, t0, t1, t2); } void reverse(node_pointer& tree, const size_type l, const size_type r) noexcept(NO_EXCEPT) { assert(l <= r); if(l == r) return; node_pointer t0, t1, t2; this->split(tree, l, r, t0, t1, t2); if(t1 != node_handler::nil) t1->data.rev ^= 1; this->merge(tree, t0, t1, t2); } void shift_left(node_pointer& tree, const size_type l, const size_type r, const size_type count = 1) noexcept(NO_EXCEPT) { assert(l <= r); if(count < 0) return this->shift_right(tree, l, r, -count); if(count == 0) return; if(count >= r - l) return this->fill(tree, l, r, {}); node_pointer t0, t1, t2, t3; this->split(tree, l, l + count, r, t0, t1, t2, t3); this->dispose(t1); this->merge(t2, t2, this->create({}, count)); this->merge(tree, t0, t2, t3); } void shift_right(node_pointer& tree, const size_type l, const size_type r, const size_type count = 1) noexcept(NO_EXCEPT) { assert(l <= r); if(count < 0) return this->shift_left(tree, l, r, -count); if(count == 0) return; if(count >= r - l) return this->fill(tree, l, r, {}); node_pointer t0, t1, t2, t3; this->split(tree, l, r - count, r, t0, t1, t2, t3); this->dispose(t2); this->merge(t1, this->create({}, count), t1); this->merge(tree, t0, t1, t3); } void rotate(node_pointer& tree, const size_type l, const size_type m, const size_type r) noexcept(NO_EXCEPT) { assert(l <= m && m < r); if(l == m) return; node_pointer t0, t1, t2, t3; this->split(tree, l, m, r, t0, t1, t2, t3); this->merge(t2, t2, t1); this->merge(tree, t0, t2, t3); } template<bool LEFT> size_type find(const node_pointer& tree, operand& val, const size_type offset) noexcept(NO_EXCEPT) { if(tree->data.acc + val == val) { return -1; } if constexpr(LEFT) { if(tree->left != node_handler::nil and tree->left->data.acc + val != val) { return this->find<true>(tree->left, val, offset); } else { return tree->data.val + val != val ? offset + tree->left->size : this->find<true>(tree->right, val, offset + tree->left->size + 1); } } else { if(tree->right != node_handler::nil and tree->right->data.acc + val != val) { return this->find<false>(tree->right, val, offset + tree->left->size + 1); } else { return tree->data.val + val != val ? offset + tree->left->size : this->find<false>(tree->left, val, offset); } } } template<bool LEFT> inline size_type find(node_pointer& tree, const size_type l, const size_type r, const operand& val) noexcept(NO_EXCEPT) { if(l == r) return -1; node_pointer t0, t1, t2; this->split(tree, l, r, t0, t1, t2); const size_type res = this->find<LEFT>(t1, val, l); this->merge(tree, t0, t1, t2); return res; } }; } // namespace dynamic_tree_impl } // namespace internal template<class ActionOrValue, class Context = treap_context<>> requires internal::available_with<internal::dynamic_tree_impl::sequence_core, ActionOrValue, Context> struct dynamic_sequence : private internal::dumpable_tree< dynamic_sequence<ActionOrValue, Context>, internal::dynamic_tree_impl::sequence_core<ActionOrValue, Context>, Context::LEAF_ONLY > { private: using sequence_core = internal::dynamic_tree_impl::sequence_core<ActionOrValue, Context>; template<class T> static consteval auto _to_operator() { if constexpr(requires { typename T::value_type; }) return typename T::value_type{}; else return T{}; } public: using operand = typename sequence_core::operand; using operation = typename sequence_core::operation; using value_type = operand; using operator_type = decltype(_to_operator<operation>()); using node_handler = typename sequence_core::node_handler; using allocator_type = typename sequence_core::allocator_type; using node_type = typename sequence_core::node_type; using node_pointer = typename sequence_core::node_pointer; using size_type = typename sequence_core::size_type; private: using dumper = internal::dumpable_tree<dynamic_sequence, sequence_core, Context::LEAF_ONLY>; friend dumper; sequence_core _impl; node_pointer _root = node_handler::nil; size_type _offset = 0; template<std::same_as<size_type>... SizeTypes> inline void _normalize_index(SizeTypes&... indices) noexcept(NO_EXCEPT) { const auto min_index = std::min({ indices... }); ((indices -= this->_offset), ...); if(min_index < this->_offset) this->_offset = min_index; } public: ~dynamic_sequence() { this->_impl.dispose(this->_root); } dynamic_sequence(const allocator_type& allocator = allocator_type()) noexcept(NO_EXCEPT) : _impl(allocator) {}; dynamic_sequence(const node_pointer& root, const size_type offset = 0, const allocator_type& allocator = allocator_type()) noexcept(NO_EXCEPT) : _impl(allocator), _root(root), _offset(offset) {}; template<std::input_iterator I, std::sized_sentinel_for<I> S> dynamic_sequence(I first, S last, const allocator_type& allocator = allocator_type()) noexcept(NO_EXCEPT) : _impl(allocator) { this->assign(first, last); } explicit dynamic_sequence(const size_type size, const value_type& val, const allocator_type& allocator = allocator_type()) noexcept(NO_EXCEPT) : _impl(allocator) { this->assign(size, val); } explicit dynamic_sequence(const size_type size, const allocator_type& allocator = allocator_type()) noexcept(NO_EXCEPT) : dynamic_sequence(size, value_type{}, allocator) {} template<std::ranges::input_range R> requires (!std::same_as<std::remove_cvref_t<R>, dynamic_sequence>) explicit dynamic_sequence(R&& range, const allocator_type& allocator = allocator_type()) noexcept(NO_EXCEPT) : dynamic_sequence(ALL(range), allocator) {} template<std::convertible_to<value_type> T> dynamic_sequence(const std::initializer_list<T>& values, const allocator_type& allocator = allocator_type()) noexcept(NO_EXCEPT) : dynamic_sequence(values, allocator) {} inline auto offset() const noexcept(NO_EXCEPT) { return this->_offset; } inline auto& root() noexcept(NO_EXCEPT) { return this->_root; } inline const auto& root() const noexcept(NO_EXCEPT) { return this->_root; } inline auto size() const noexcept(NO_EXCEPT) { return this->_root->size; } inline bool empty() const noexcept(NO_EXCEPT) { return this->size() == 0; } template<internal::resizable_range Container> inline auto to() noexcept(NO_EXCEPT) { Container res; res.resize(this->size()); auto itr = std::ranges::begin(res); this->_impl.enumerate(this->_root, itr); return res; } inline void clear() noexcept(NO_EXCEPT) { this->_impl.dispose(this->_root); this->_root = node_handler::nil; this->_offset = 0; } inline auto clone() const noexcept { return *this; } inline auto clone(size_type l, size_type r) noexcept(NO_EXCEPT) { this->_normalize_index(l, r); node_pointer t0, t1, t2; this->_impl.split(this->_root, l, r, t0, t1, t2); this->_impl.merge(this->_root, t0, t1, t2); return dynamic_sequence(t1, this->_offset); } inline auto split(size_type pos) noexcept(NO_EXCEPT) { this->_normalize_index(pos); node_pointer t0, t1; this->_impl.split(this->_root, pos, t0, t1); return std::make_pair(dynamic_sequence(t0, this->_offset), dynamic_sequence(t1, this->_offset)); } inline auto extract(size_type l, size_type r) noexcept(NO_EXCEPT) { this->_normalize_index(l, r); node_pointer t0, t1, t2; this->_impl.split(this->_root, l, r, t0, t1, t2); this->_impl.merge(this->_root, t0, t2); return dynamic_sequence(t1, this->_offset); } inline auto& insert(size_type pos, const dynamic_sequence& other) noexcept(NO_EXCEPT) { this->_normalize_index(pos); node_pointer t0, t1; this->_impl.split(this->_root, pos, t0, t1); this->_impl.merge(this->_root, t0, other._root, t1); return *this; } inline auto& replace(size_type l, size_type r, const dynamic_sequence& other) noexcept(NO_EXCEPT) { this->_normalize_index(l, r); node_pointer t0, t1, t2; this->_impl.split(this->_root, l, r, t0, t1, t2); this->_impl.merge(this->_root, t0, other._root, t2); return *this; } inline auto& merge(const dynamic_sequence& other) noexcept(NO_EXCEPT) { this->_impl.merge(this->_root, this->_root, other._root); return *this; } template<std::input_iterator I, std::sized_sentinel_for<I> S> inline auto& assign(I first, S last) noexcept(NO_EXCEPT) { this->clear(); this->_root = this->_impl.build(first, last); return *this; } inline auto& assign(const size_type size, const value_type& val = value_type{}) noexcept(NO_EXCEPT) { this->clear(); this->_impl.insert(this->_root, 0, val, size); return *this; } template<std::ranges::input_range R> inline auto& assign(R&& range) noexcept(NO_EXCEPT) { return this->assign(ALL(range)); } template<std::convertible_to<value_type> T> inline auto& assign(const std::initializer_list<T>& values) noexcept(NO_EXCEPT) { return this->assign(values); } inline auto& resize(const size_type size, const value_type& val = value_type{}) noexcept(NO_EXCEPT) { if(this->size() > size) this->_impl.erase(this->_root, size, this->size()); if(this->size() < size) this->push_back(val, size - this->size()); return *this; } inline auto& expand(size_type l, size_type r) noexcept(NO_EXCEPT) { this->_normalize_index(l, r); node_pointer t0, t1, t2; this->_impl.split(this->_root, l, r, t0, t1, t2); this->_impl.merge(this->_root, t0, t1, t2); return *this; } inline auto& expand(size_type pos) noexcept(NO_EXCEPT) { this->_normalize_index(pos); node_pointer t0, t1; this->_impl.split(this->_root, pos, t0, t1); this->_impl.merge(this->_root, t0, t1); return *this; } inline auto& fill(const value_type& val) noexcept(NO_EXCEPT) { this->_impl.fill(this->_root, 0, this->size(), val); return *this; } inline auto fold() noexcept(NO_EXCEPT) { return this->_impl.val(this->_root); } inline auto& apply(const operator_type& val) noexcept(NO_EXCEPT) { this->_root->data.lazy = this->_root->data.lazy + val; this->update(this->_root); return *this; } inline auto front() noexcept(NO_EXCEPT) { return this->_impl.fold(this->_root, 0, 1); } inline auto back() noexcept(NO_EXCEPT) { return this->_impl.fold(this->_root, this->size() - 1, this->size()); } inline auto& push_front(const value_type& val, const size_type count = 1) noexcept(NO_EXCEPT) { this->_impl.insert(this->_root, 0, val, count); return *this; } inline auto& push_back(const value_type& val, const size_type count = 1) noexcept(NO_EXCEPT) { this->_impl.insert(this->_root, this->size(), val, count); return *this; } inline auto& reverse() noexcept(NO_EXCEPT) { this->_root->data.rev ^= 1; this->_impl.update(this->_root); return *this; } inline auto& shift_left(const size_type count = 1) noexcept(NO_EXCEPT) { this->_impl.shift_left(this->_root, 0, this->size(), count); return *this; } inline auto& shift_right(const size_type count = 1) noexcept(NO_EXCEPT) { this->_impl.shift_right(this->_root, 0, this->size(), count); return *this; } // Same usage as: std::rotate(:m:) inline auto& rotate(size_type m) noexcept(NO_EXCEPT) { this->_normalize_index(m); this->_impl.rotate(this->_root, 0, m, this->size()); return *this; } // Same usage as: std::rotate(:m:) inline auto& rotate_left(const size_type count = 1) noexcept(NO_EXCEPT) { assert(!this->empty()); this->_impl.rotate(this->_root, 0, uni::mod(count, this->size()), this->size()); return *this; } // Same usage as: std::rotate(:m:) inline auto& rotate_right(const size_type count = 1) noexcept(NO_EXCEPT) { assert(!this->empty()); this->_impl.rotate(this->_root, 0, uni::mod(-count, this->size()), this->size()); return *this; } template<std::input_iterator I, std::sized_sentinel_for<I> S> inline auto& insert(size_type pos, I first, S last) noexcept(NO_EXCEPT) { this->_normalize_index(pos); this->_impl.insert(this->_root, pos, first, last); return *this; } inline auto& insert(size_type pos, const operand& val, const size_type count = 1) noexcept(NO_EXCEPT) { this->_normalize_index(pos); this->_impl.insert(this->_root, pos, val, count); return *this; } inline auto& erase(size_type l, size_type r) noexcept(NO_EXCEPT) { this->_normalize_index(l, r); this->_impl.erase(this->_root, l, r); return *this; } inline auto& erase(const size_type pos) noexcept(NO_EXCEPT) { return this->erase(pos, pos + 1); } inline auto pop(size_type pos, const size_type count = 1) noexcept(NO_EXCEPT) { this->_normalize_index(pos); return this->_impl.pop(this->_root, pos, count); } inline auto get(size_type pos) noexcept(NO_EXCEPT) { this->_normalize_index(pos); return this->_impl.get(this->_root, pos); } inline auto& add(size_type pos, const value_type& val) noexcept(NO_EXCEPT) { this->_normalize_index(pos); this->_impl.add(this->_root, pos, val); return *this; } inline auto& fill(size_type l, size_type r, const value_type& val) noexcept(NO_EXCEPT) { this->_normalize_index(l, r); this->_impl.fill(this->_root, l, r, val); return *this; } inline auto fold(size_type l, size_type r) noexcept(NO_EXCEPT) { this->_normalize_index(l, r); return this->_impl.fold(this->_root, l, r); } inline auto& apply(size_type l, size_type r, const operation& val) noexcept(NO_EXCEPT) { this->_normalize_index(l, r); this->_impl.apply(this->_root, l, r, val); return *this; } inline auto& reverse(size_type l, size_type r) noexcept(NO_EXCEPT) { this->_normalize_index(l, r); this->_impl.reverse(this->_root, l, r); return *this; } inline auto& rotate(size_type l, size_type m, size_type r) noexcept(NO_EXCEPT) { this->_normalize_index(l, m, r); this->_impl.rotate(this->_root, l, m, r); return *this; } inline auto& shift_left(size_type l, size_type r, const size_type count = 1) noexcept(NO_EXCEPT) { this->_normalize_index(l, r); this->_impl.shift_left(this->_root, l, r, count); return *this; } inline auto& shift_right(size_type l, size_type r, const size_type count = 1) noexcept(NO_EXCEPT) { this->_normalize_index(l, r); this->_impl.shift_right(this->_root, l, r, count); return *this; } inline auto pop_front(const size_type count = 1) noexcept(NO_EXCEPT) { return this->_impl.pop(this->_root, 0, count); } inline auto pop_back(const size_type count = 1) noexcept(NO_EXCEPT) { return this->_impl.pop(this->_root, this->size() - count, count); } template<std::ranges::input_range R> requires (!std::same_as<std::remove_cvref_t<R>, dynamic_sequence>) inline auto& insert(const size_type pos, R&& range) noexcept(NO_EXCEPT) { return this->insert(pos, ALL(range)); } inline auto& set(const size_type pos, const value_type& val) noexcept(NO_EXCEPT) { return this->fill(pos, pos + 1, val); } inline auto& apply(const size_type pos, const operator_type& val) noexcept(NO_EXCEPT) { return this->apply(pos, pos + 1, val); } inline auto& rotate_left(const size_type l, const size_type r, const size_type count = 1) noexcept(NO_EXCEPT) { assert(l < r); return this->rotate(l, l + uni::mod(count, r - l), r); } inline auto& rotate_right(const size_type l, const size_type r, const size_type count = 1) noexcept(NO_EXCEPT) { assert(l < r); return this->rotate(l, l + uni::mod(-count, r - l), r); } // Find the min / max k in [l, r) that satisfies (this[k] + x) != x. // If no such k is found, return -1. template<bool LEFT = true> inline auto find(const size_type l, const size_type r, const value_type& val) noexcept(NO_EXCEPT) { return this->template find<LEFT>(l, r - 1, r); } // Find the min / max k in whole that satisfies (this[k] + x) != x. // If no such k is found, return -1. template<bool LEFT = true> inline auto find(const value_type& val) noexcept(NO_EXCEPT) { return this->find<LEFT>(0, this->size(), val); } struct point_reference : internal::point_reference<dynamic_sequence, size_type> { point_reference(dynamic_sequence *const super, const size_type pos) noexcept(NO_EXCEPT) : internal::point_reference<dynamic_sequence, size_type>(super, pos) {} operator value_type() noexcept(NO_EXCEPT) { return this->_super->get(this->_pos); } auto val() noexcept(NO_EXCEPT) { return this->_super->get(this->_pos); } inline auto& operator=(const value_type& val) noexcept(NO_EXCEPT) { this->_super->set(this->_pos, val); return *this; } inline auto& operator+=(const value_type& val) noexcept(NO_EXCEPT) { this->_super->add(this->_pos, val); return *this; } inline auto& operator*=(const operator_type& val) noexcept(NO_EXCEPT) { this->_super->apply(this->_pos, val); return *this; } }; struct range_reference : internal::range_reference<dynamic_sequence, size_type> { range_reference(dynamic_sequence *const super, const size_type l, const size_type r) noexcept(NO_EXCEPT) : internal::range_reference<dynamic_sequence, size_type>(super, l, r) {} inline auto clone() noexcept(NO_EXCEPT) { return this->_super->clone(this->_begin, this->_end); } inline auto fold() noexcept(NO_EXCEPT) { return this->_super->fold(this->_begin, this->_end); } inline auto& operator=(const value_type& val) noexcept(NO_EXCEPT) { this->_super->fill(this->_begin, this->_end, val); return *this; } inline auto& operator*=(const operator_type& val) noexcept(NO_EXCEPT) { this->_super->apply(this->_begin, this->_end, val); return *this; } // Find the min / max k in [l, r) that satisfies (this[k] + x) != x. // If no such k is found, return -1. template<bool LEFT = true> inline auto find(const value_type& val) noexcept(NO_EXCEPT) { return this->_super->template find<LEFT>(this->_begin, this->_end, val); } }; inline auto operator[](const size_type pos) noexcept(NO_EXCEPT) { return point_reference(this, pos); } inline auto operator()(const size_type l, const size_type r) noexcept(NO_EXCEPT) { return range_reference(this, l, r); } struct iterator; protected: using iterator_interface = internal::container_iterator_interface<value_type, dynamic_sequence, iterator>; public: struct iterator : iterator_interface { using iterator_interface::iterator_interface; }; inline auto begin() noexcept(NO_EXCEPT) { return iterator(this, 0); } inline auto end() noexcept(NO_EXCEPT) { return iterator(this, this->size()); } inline auto rbegin() noexcept(NO_EXCEPT) { return std::make_reverse_iterator(this->end()); } inline auto rend() noexcept(NO_EXCEPT) { return std::make_reverse_iterator(this->begin()); } inline auto traverse() const noexcept(NO_EXCEPT) { return typename sequence_core::traverser(this->_root); } using dumper::dump_rich; using dumper::_debug; debugger::debug_t dump_rich(const std::string prefix = " ") { return "\n" + this->dump_rich(this->_root, prefix); } debugger::debug_t _debug() { return "[ " + this->_debug(this->_root) + " ]"; } }; } // namespace uni #line 2 "data_structure/dynamic_set.hpp" #line 12 "data_structure/dynamic_set.hpp" #line 15 "data_structure/dynamic_set.hpp" #line 22 "data_structure/dynamic_set.hpp" #line 25 "data_structure/dynamic_set.hpp" #line 27 "data_structure/dynamic_set.hpp" #line 31 "data_structure/dynamic_set.hpp" #line 33 "data_structure/dynamic_set.hpp" #line 35 "data_structure/dynamic_set.hpp" #line 38 "data_structure/dynamic_set.hpp" #line 40 "data_structure/dynamic_set.hpp" namespace uni { namespace internal { namespace dynamic_tree_impl { template<class ActionOrValue, class Context> requires (!Context::LEAF_ONLY) struct set_core : internal::basic_core<ActionOrValue, set_core<ActionOrValue, Context>, Context> { private: using base = internal::basic_core<ActionOrValue, set_core, Context>; public: using base::base; using data_type = base::data_type; using operand = base::operand; using node_handler = typename base::node_handler; using node_type = typename base::node_type; using node_pointer = typename base::node_pointer; using size_type = typename base::size_type; inline void pull(const node_pointer tree) const noexcept(NO_EXCEPT) { tree->data.acc = tree->left->data.acc + tree->length * tree->data.val + tree->right->data.acc; } inline constexpr void push(const node_pointer) const noexcept(NO_EXCEPT) { /* do nothing */ } template<std::random_access_iterator I, std::sized_sentinel_for<I> S> node_pointer build(I first, S last) { std::vector<i64> val; val.assign(first, last); std::ranges::sort(val); return this->base::build(ALL(val)); } void insert(node_pointer& tree, const operand& val, const size_type count = 1) noexcept(NO_EXCEPT) { if(count == 0) return; if(count < 0) return this->erase(tree, val, -count); node_pointer t0, t1; this->split(tree, { val }, t0, t1); this->merge(tree, t0, this->create(val, count), t1); } void insert_unique(node_pointer& tree, const operand& val, const size_type count = 1) noexcept(NO_EXCEPT) { if(count == 0) return; if(count < 0) return this->erase(tree, val, -count); node_pointer t0, t1; bool exist = false; this->template split<false, true>(tree, { val }, t0, t1, &exist); if(exist) this->merge(tree, t0, t1); else this->merge(tree, t0, this->create(val, count), t1); } void erase(node_pointer& tree, const operand& val, const size_type count = 1) noexcept(NO_EXCEPT) { if(count == 0) return; if(count < 0) return this->insert(tree, val, -count); node_pointer t0, t1, t2; this->split(tree, { val }, t0, t1); this->split(t1, count, t1, t2); this->dispose(t1); this->merge(tree, t0, t2); } void erase_limit(node_pointer& tree, const operand& val, size_type count = 1) noexcept(NO_EXCEPT) { if(count == 0) return; if(count < 0) return this->insert(tree, val, -count); node_pointer t0, t1, t2, t3; this->split(tree, { val }, t0, t1); this->template split<true>(t1, { val }, t1, t3); if(count >= t1->size) count = t1->size; this->split(t1, count, t1, t2); this->dispose(t1); this->merge(t2, t0, t2); this->merge(tree, t2, t3); } auto fold(node_pointer tree, const size_type l, const size_type r) noexcept(NO_EXCEPT) { assert(0 <= l && l <= r && r <= tree->size); return this->base::fold(tree, l, r); } void erase(node_pointer& tree, const size_type l, const size_type r) noexcept(NO_EXCEPT) { assert(0 <= l && l <= r && r <= tree->size); this->base::erase(tree, l, r); } auto pop(node_pointer& tree, const size_type pos, const size_type count = 1) noexcept(NO_EXCEPT) { assert(0 <= pos && 0 <= count && pos + count <= tree->size); return this->base::pop(tree, pos, count); } auto get(node_pointer tree, const size_type pos) noexcept(NO_EXCEPT) { assert(0 <= pos && pos < tree->size); return this->base::get(tree, pos); } template<bool STRICT = false> auto find(node_pointer& tree, const operand& val) noexcept(NO_EXCEPT) { node_pointer t0, t1; this->template split<STRICT>(tree, { val }, t0, t1); const auto res = t0->size; this->merge(tree, t0, t1); return res; } auto equal_range(node_pointer& tree, const operand& val) noexcept(NO_EXCEPT) { node_pointer t0, t1, t2; this->template split<true>(tree, { val }, t1, t2); this->split(t1, { val }, t0, t1); const auto lower = t0->size; this->merge(t1, t0, t1); const auto upper = t1->size; this->merge(tree, t1, t2); return std::make_pair(std::move(lower), std::move(upper)); } }; } // namespace dynamic_tree_impl } // namespace internal template<class Value, class Context = treap_context<>> struct dynamic_set : dynamic_set<actions::make_full_t<Value>, Context> { using dynamic_set<actions::make_full_t<Value>, Context>::dynamic_set; }; template<actions::internal::full_action ActionOrValue, class Context> requires internal::available_with<internal::dynamic_tree_impl::set_core, ActionOrValue, Context> struct dynamic_set<ActionOrValue, Context> : private internal::dumpable_tree< dynamic_set<ActionOrValue, Context>, internal::dynamic_tree_impl::set_core<ActionOrValue, Context>, Context::LEAF_ONLY > { public: using action = ActionOrValue; using operand = typename action::operand; using value_type = operand; using set_core = internal::dynamic_tree_impl::set_core<ActionOrValue, Context>; using node_handler = typename set_core::node_handler; using allocator_type = typename set_core::allocator_type; using node_type = typename set_core::node_type; using node_pointer = typename set_core::node_pointer; using size_type = typename set_core::size_type; private: using dumper = internal::dumpable_tree<dynamic_set, set_core, Context::LEAF_ONLY>; friend dumper; set_core _impl; node_pointer _root = node_handler::nil; size_type _offset = 0; public: ~dynamic_set() { this->_impl.dispose(this->_root); } dynamic_set(const allocator_type& allocator = allocator_type()) noexcept(NO_EXCEPT) : _impl(allocator) {}; template<std::input_iterator I, std::sized_sentinel_for<I> S> dynamic_set(I first, S last, const allocator_type& allocator = allocator_type()) noexcept(NO_EXCEPT) : _impl(allocator) { this->assign(first, last); } explicit dynamic_set(const size_type size, const value_type& val, const allocator_type& allocator = allocator_type()) noexcept(NO_EXCEPT) : _impl(allocator) { this->assign(size, val); } explicit dynamic_set(const size_type size, const allocator_type& allocator = allocator_type()) noexcept(NO_EXCEPT) : dynamic_set(size, value_type{}, allocator) {} template<std::ranges::input_range R> explicit dynamic_set(R&& range, const allocator_type& allocator = allocator_type()) noexcept(NO_EXCEPT) : dynamic_set(ALL(range), allocator) {} template<std::convertible_to<value_type> T> dynamic_set(const std::initializer_list<T>& values, const allocator_type& allocator = allocator_type()) noexcept(NO_EXCEPT) : dynamic_set(values, allocator) {} inline node_pointer& root() noexcept(NO_EXCEPT) { return this->_root; } inline const node_pointer& root() const noexcept(NO_EXCEPT) { return this->_root; } size_type size() const noexcept(NO_EXCEPT) { return this->_root->size; } bool empty() const noexcept(NO_EXCEPT) { return this->size() == 0; } template<internal::resizable_range Container> inline auto to() noexcept(NO_EXCEPT) { Container res; res.resize(this->size()); auto itr = std::ranges::begin(res); this->_impl.enumerate(this->_root, itr); return res; } inline void clear() noexcept(NO_EXCEPT) { this->_impl.dispose(this->_root); this->_root = node_handler::nil; } template<bool UNIQUE = false, std::input_iterator I, std::sized_sentinel_for<I> S> inline auto& assign(I first, S last) noexcept(NO_EXCEPT) { this->clear(); this->insert<UNIQUE>(first, last); return *this; } template<bool UNIQUE = false> inline auto& assign(const size_type size, const value_type& val = value_type{}) noexcept(NO_EXCEPT) { this->clear(); this->insert<UNIQUE>(val, size); return *this; } template<bool UNIQUE = false, std::ranges::input_range R> inline auto& assign(R&& range) noexcept(NO_EXCEPT) { return this->assign<UNIQUE>(ALL(range)); } template<bool UNIQUE = false, std::convertible_to<value_type> T> inline auto& assign(const std::initializer_list<T>& values) noexcept(NO_EXCEPT) { return this->assign<UNIQUE>(values); } template<bool UNIQUE = false> inline auto& insert(const operand& val, const size_type count = 1) noexcept(NO_EXCEPT) { if constexpr(UNIQUE) this->_impl.insert_unique(this->_root, val, count); else this->_impl.insert(this->_root, val, count); return *this; } template<bool UNIQUE = false, std::input_iterator I, std::sized_sentinel_for<I> S> inline auto& insert(I first, S last) noexcept(NO_EXCEPT) { for(; first != last; ++first) this->template insert<UNIQUE>(*first); return *this; } template<bool UNIQUE = false, std::ranges::input_range R> inline auto& insert(R&& range) noexcept(NO_EXCEPT) { return this->template insert<UNIQUE>(ALL(range)); } inline auto& fill(const value_type& val) noexcept(NO_EXCEPT) { const size_type size = this->size(); this->clear(); this->insert(val, size); return *this; } template<bool LIMIT = true> inline auto& erase(const value_type& val, const size_type count = 1) noexcept(NO_EXCEPT) { if constexpr(LIMIT) this->_impl.erase_limit(this->_root, val, count); else this->_impl.erase(this->_root, val, count); return *this; } inline auto& erase(const size_type l, const size_type r) noexcept(NO_EXCEPT) { this->_impl.erase(this->_root, l, r); return *this; } inline value_type pop(const size_type pos, const size_type count = 1) noexcept(NO_EXCEPT) { return this->_impl.pop(this->_root, pos, count); } inline value_type pop_min(const size_type count = 1) noexcept(NO_EXCEPT) { return this->pop(0, count); } inline value_type pop_max(const size_type count = 1) noexcept(NO_EXCEPT) { return this->pop(this->size() - count, count); } inline operand fold(const size_type l, const size_type r) noexcept(NO_EXCEPT) { return this->_impl.fold(this->_root, l, r); } inline value_type get(const size_type k) noexcept(NO_EXCEPT) { return this->_impl.get(this->_root, k); } inline operand median(const size_type l, const size_type r) noexcept(NO_EXCEPT) { return this->get((r - l) >> 1); } inline value_type min() noexcept(NO_EXCEPT) { return this->get(0); } inline value_type median() noexcept(NO_EXCEPT) { return this->get(this->size() >> 1); } inline value_type max() noexcept(NO_EXCEPT) { return this->get(this->size() - 1); } inline auto fold() noexcept(NO_EXCEPT) { return this->_root->data.acc; } inline value_type operator[](const size_type k) noexcept(NO_EXCEPT) { return this->get(k); } inline value_type operator()(const size_type l, const size_type r) noexcept(NO_EXCEPT) { return this->fold(l, r); } struct iterator; inline auto lower_bound(const value_type& val) noexcept(NO_EXCEPT) { return iterator{ this, this->_impl.template find<false>(this->_root, val) }; } inline auto upper_bound(const value_type& val) noexcept(NO_EXCEPT) { return iterator{ this, this->_impl.template find<true>(this->_root, val) }; } inline auto equal_range(const value_type& val) noexcept(NO_EXCEPT) { const auto [ lower, upper ] = this->_impl.equal_range(this->_root, val); return std::make_pair(iterator{ this, lower }, iterator{ this, upper }); } inline size_type count(const value_type& val) noexcept(NO_EXCEPT) { const auto [ lower, upper ] = this->_impl.equal_range(this->_root, val); return upper - lower; } inline bool contains(const value_type& val) noexcept(NO_EXCEPT) { return this->count(val) == 1; } inline auto& erase(const iterator& itr) noexcept(NO_EXCEPT) { return this->erase(itr.pos(), itr.pos() + 1); } inline auto& erase(const iterator& l, const iterator& r) noexcept(NO_EXCEPT) { return this->erase(l.pos(), r.pos()); } protected: using iterator_interface = internal::container_iterator_interface<value_type,dynamic_set,iterator>; public: struct iterator : iterator_interface { using iterator_interface::iterator_interface; }; inline auto begin() noexcept(NO_EXCEPT) { return iterator{ this, 0 }; } inline auto end() noexcept(NO_EXCEPT) { return iterator{ this, this->size() }; } inline auto rbegin() const noexcept(NO_EXCEPT) { return std::make_reverse_iterator(this->end()); } inline auto rend() const noexcept(NO_EXCEPT) { return std::make_reverse_iterator(this->begin()); } using dumper::dump_rich; using dumper::_debug; debugger::debug_t dump_rich(const std::string prefix = " ") { return "\n" + this->dump_rich(this->_root, prefix); } debugger::debug_t _debug() { return "[ " + this->_debug(this->_root) + " ]"; } }; } // namespace uni #line 2 "data_structure/fenwick_tree.hpp" #line 12 "data_structure/fenwick_tree.hpp" #line 21 "data_structure/fenwick_tree.hpp" #line 24 "data_structure/fenwick_tree.hpp" #line 27 "data_structure/fenwick_tree.hpp" namespace uni { namespace internal { namespace fenwick_tree_impl { // Thanks to: atcoder::fenwick_tree template<algebraic::internal::monoid Operand> struct core { using operand = Operand; using size_type = internal::size_t; private: size_type _n = 0, _bit_ceil = 0; std::vector<operand> _data; inline void _init() noexcept(NO_EXCEPT) { FOR(i, 1, this->_n) { size_type j = i + (i & -i); if(j <= this->_n) this->_data[j-1] = this->_data[j-1] + this->_data[i-1]; } } public: core() noexcept(NO_EXCEPT) {} explicit core(const size_type n) noexcept(NO_EXCEPT) : _n(n), _bit_ceil(std::bit_ceil<std::make_unsigned_t<size_type>>(n)), _data(n, operand{}) {} inline size_type size() const noexcept(NO_EXCEPT) { return this->_n; } template<std::input_iterator I, std::sentinel_for<I> S> inline void assign(I first, S last) noexcept(NO_EXCEPT) { if constexpr(std::sized_sentinel_for<S, I>) { assert(std::ranges::distance(first, last) == this->size()); } for(size_type i = 0; first < last; ++i, ++first) this->_data[i] = *first; this->_init(); } inline void add(size_type p, const operand& x) noexcept(NO_EXCEPT) { for(p++; p<=this->_n; p += p & -p) this->_data[p-1] = this->_data[p-1] + x; } inline void set(const size_type p, const operand& x) noexcept(NO_EXCEPT) { assert(this->get(p) == this->fold(p, p+1)); this->add(p, x + -this->get(p)); } inline operand fold(size_type r) const noexcept(NO_EXCEPT) { operand s = operand{}; for(; r>0; r -= r & -r) s = s + this->_data[r-1]; return s; } inline operand fold(size_type l, size_type r) const noexcept(NO_EXCEPT) { operand s = operand{}; for(; l < r; r -= r & -r) s = s + this->_data[r-1]; for(; r < l; l -= l & -l) s = s + -this->_data[l-1]; return s; } inline operand get(size_type p) const noexcept(NO_EXCEPT) { return this->fold(p, p+1); } template<class F> inline size_type max_right(size_type l, F&& f) const noexcept(NO_EXCEPT) requires algebraic::internal::invertible<operand> { assert(0 <= l && l <= this->_n); assert(f(operand{})); if(l == this->_n) return this->_n; operand inv = -this->fold(l); size_type p = 0, q = this->_bit_ceil; for(size_type k=q; k>0; k >>= 1) { if(p+k <= this->_n and f(this->_data[p+k-1] + inv)) { inv = inv + this->_data[(p+=k)-1]; } } return p; } template<class F> inline size_type min_left(size_type r, F&& f) const noexcept(NO_EXCEPT) requires algebraic::internal::invertible<operand> { assert(0 <= r && r <= this->_n); assert(f(operand{})); if(r == 0) return 0; operand acc = this->fold(r); size_type p = 0, q = std::bit_ceil<std::make_unsigned_t<size_type>>(r); for(size_type k=q; k>0; k >>= 1) { if(p+k < r and !f(acc + -this->_data[p+k-1])) { acc = acc + -this->_data[(p+=k)-1]; } } if(p == 0 and f(acc)) return 0; return p + 1; } }; } // namespace fenwick_tree_impl } // namespace internal template<class Value> struct fenwick_tree : internal::unconstructible {}; template<algebraic::internal::monoid Monoid> struct fenwick_tree<Monoid> : internal::fenwick_tree_impl::core<Monoid> { static_assert(algebraic::internal::commutative<Monoid>); private: using core = typename internal::fenwick_tree_impl::core<Monoid>; core _impl; public: using value_type = typename core::operand; using size_type = typename core::size_type; protected: inline size_type _positivize_index(const size_type p) const noexcept(NO_EXCEPT) { return p < 0 ? this->_impl.size() + p : p; } public: fenwick_tree() noexcept(NO_EXCEPT) : _impl() {} explicit fenwick_tree(const size_type n) noexcept(NO_EXCEPT) : _impl(n) {} explicit fenwick_tree(const size_type n, const value_type& v) noexcept(NO_EXCEPT) : _impl(n) { this->_impl.fill(v); } template<std::convertible_to<value_type> T> fenwick_tree(const std::initializer_list<T>& init_list) noexcept(NO_EXCEPT) : fenwick_tree(ALL(init_list)) {} template<std::input_iterator I, std::sized_sentinel_for<I> S> explicit fenwick_tree(I first, S last) noexcept(NO_EXCEPT) : fenwick_tree(static_cast<size_type>(std::ranges::distance(first, last))) { this->assign(first, last); } template<std::ranges::input_range R> explicit fenwick_tree(R&& range) noexcept(NO_EXCEPT) : fenwick_tree(ALL(range)) {} template<std::convertible_to<value_type> T> inline auto& assign(const std::initializer_list<T>& init_list) noexcept(NO_EXCEPT){ return this->assign(ALL(init_list)); } template<std::input_iterator I, std::sentinel_for<I> S> inline auto& assign(I first, S last) noexcept(NO_EXCEPT) { this->_impl.assign(first, last); return *this; } template<std::ranges::input_range R> inline auto& assign(R&& range) noexcept(NO_EXCEPT) { return this->assign(ALL(range)); } inline auto& fill(const value_type& v = value_type()) noexcept(NO_EXCEPT) { std::fill(this->data(), this->data() + this->_impl.size(), v); this->_init(); return *this; } inline auto size() const noexcept(NO_EXCEPT) { return this->_impl.size(); } inline bool empty() const noexcept(NO_EXCEPT) { return this->_impl.size() == 0; } struct point_reference : internal::point_reference<fenwick_tree> { point_reference(fenwick_tree *const super, const size_type p) noexcept(NO_EXCEPT) : internal::point_reference<fenwick_tree>(super, super->_positivize_index(p)) { assert(0 <= this->_pos && this->_pos < this->_super->size()); } operator value_type() const noexcept(NO_EXCEPT) { return this->_super->get(this->_pos); } auto val() const noexcept(NO_EXCEPT) { return this->_super->get(this->_pos); } inline auto& operator=(const value_type& v) noexcept(NO_EXCEPT) { this->_super->set(this->_pos, v); return *this; } inline auto& operator+=(const value_type& v) noexcept(NO_EXCEPT) { this->_super->add(this->_pos, v); return *this; } }; struct range_reference : internal::range_reference<fenwick_tree> { range_reference(fenwick_tree *const super, const size_type l, const size_type r) noexcept(NO_EXCEPT) : internal::range_reference<fenwick_tree>(super, super->_positivize_index(l), super->_positivize_index(r)) { assert(0 <= this->_begin && this->_begin <= this->_end && this->_end <= this->_super->size()); } inline auto fold() noexcept(NO_EXCEPT) { if(this->_begin == 0 and this->_end == this->_super->size()) return this->_super->fold(); if(this->_begin == 0) return this->_super->fold(this->_end); return this->_super->fold(this->_begin, this->_end); } }; inline auto& add(const size_type p, const value_type& x) noexcept(NO_EXCEPT) { assert(0 <= p && p < this->_impl.size()); this->_impl.add(p, x); return *this; } inline auto& set(const size_type p, const value_type& x) noexcept(NO_EXCEPT) requires algebraic::internal::invertible<value_type> { assert(0 <= p && p < this->_impl.size()); this->_impl.set(p, x); return *this; } inline value_type get(const size_type p) const noexcept(NO_EXCEPT) requires algebraic::internal::invertible<value_type> { assert(0 <= p && p < this->_impl.size()); return this->_impl.get(p); } inline auto operator[](const size_type p) noexcept(NO_EXCEPT) { return point_reference(this, p); } inline const auto operator()(const size_type l, const size_type r) const noexcept(NO_EXCEPT) { return range_reference(this, l, r); } inline auto operator()(const size_type l, const size_type r) noexcept(NO_EXCEPT) { return range_reference(this, l, r); } inline auto fold(const size_type l, const size_type r) const noexcept(NO_EXCEPT) requires algebraic::internal::invertible<value_type> { assert(0 <= l && l <= r && r <= this->_impl.size()); return this->_impl.fold(l, r); } inline auto fold(const size_type r) const noexcept(NO_EXCEPT) { assert(0 <= r && r <= this->_impl.size()); return this->_impl.fold(r); } inline auto fold() const noexcept(NO_EXCEPT) { return this->_impl.fold(this->_impl.size()); } struct iterator; protected: using iterator_interface = internal::container_iterator_interface<value_type, const fenwick_tree, iterator>; public: struct iterator : iterator_interface { using iterator_interface::iterator_interface; }; inline auto begin() const noexcept(NO_EXCEPT) { return iterator(this, 0); } inline auto end() const noexcept(NO_EXCEPT) { return iterator(this, this->_impl.size()); } inline auto rbegin() const noexcept(NO_EXCEPT) { return std::make_reverse_iterator(this->end()); } inline auto rend() const noexcept(NO_EXCEPT) { return std::make_reverse_iterator(this->begin()); } }; template<actions::internal::operatable_action Action> struct fenwick_tree<Action> : fenwick_tree<typename Action::operand> { using fenwick_tree<typename Action::operand>::fenwick_tree; }; } // namespace uni #line 2 "data_structure/foldable_deque.hpp" #line 6 "data_structure/foldable_deque.hpp" #line 2 "adaptor/stack.hpp" #line 6 "adaptor/stack.hpp" namespace uni { template<class T, class Allocator = std::allocator<T>> using stack = std::stack<T, std::vector<T, Allocator>>; } // namespace uni #line 2 "adaptor/deque_by_stack.hpp" #line 9 "adaptor/deque_by_stack.hpp" #line 12 "adaptor/deque_by_stack.hpp" #line 14 "adaptor/deque_by_stack.hpp" namespace uni { template<class Front, class Back = Front> struct deque_by_stack { static_assert(std::same_as<typename Front::value_type, typename Back::value_type>); static_assert(std::common_reference_with<typename Front::size_type, typename Back::size_type>); using value_type = Front::value_type; using size_type = std::common_type_t<typename Front::size_type, typename Back::size_type>; protected: Front _front; Back _back; private: template<std::ptrdiff_t OFFSET> inline void _distribute() noexcept(NO_EXCEPT) { if(this->empty()) return; std::vector<value_type> temp; temp.reserve(this->size()); if(this->_front.empty()) { while(!this->_back.empty()) { temp.push_back(this->_back.top()); this->_back.pop(); } std::ranges::reverse(temp); } else if(this->_back.empty()) { while(!this->_front.empty()) { temp.push_back(this->_front.top()); this->_front.pop(); } } else { return; } assert(this->empty()); const auto size = std::ranges::ssize(temp); const auto mid = (size + OFFSET) / 2; REPD(i, mid) this->_front.push(temp[i]); REP(i, mid, size) this->_back.push(temp[i]); } public: deque_by_stack() noexcept = default; inline bool empty() const noexcept(NO_EXCEPT) { return this->_front.empty() && this->_back.empty(); } inline auto size() const noexcept(NO_EXCEPT) { return this->_front.size() + this->_back.size(); } inline decltype(auto) front() const noexcept(NO_EXCEPT) { this->_distribute<1>(); assert(!this->_front.empty()); return this->_front.top(); } inline decltype(auto) back() const noexcept(NO_EXCEPT) { this->_distribute<0>(); assert(!this->_back.empty()); return this->_back.top(); } template<std::convertible_to<value_type> T = value_type> requires std::is_move_constructible_v<T> inline decltype(auto) front_or(T&& val) const noexcept(NO_EXCEPT) { if(this->empty()) return static_cast<value_type>(std::forward<T>(val)); else return this->front(); } template<std::convertible_to<value_type> T = value_type> requires std::is_move_constructible_v<T> inline decltype(auto) back_or(T&& val) const noexcept(NO_EXCEPT) { if(this->empty()) return static_cast<value_type>(std::forward<T>(val)); else return this->back(); } inline auto& clear() noexcept(NO_EXCEPT) { this->_front.clear(), this->_back.clear(); return *this; } template<std::convertible_to<value_type> T = value_type> inline auto& push_front(T&& val) noexcept(NO_EXCEPT) { this->_front.push(std::forward<T>(val)); return *this; } template<std::convertible_to<value_type> T = value_type> inline auto& push_back(T&& val) noexcept(NO_EXCEPT) { this->_back.push(std::forward<T>(val)); return *this; } template<class... Args> inline decltype(auto) emplace_front(Args&&... args) noexcept(NO_EXCEPT) { return this->_front.emplace(std::forward<Args>(args)...); } template<class... Args> inline decltype(auto) emplace_back(Args&&... args) noexcept(NO_EXCEPT) { return this->_back.emplace(std::forward<Args>(args)...); } auto& pop_front() noexcept(NO_EXCEPT) { this->_distribute<1>(); assert(!this->_front.empty()); this->_front.pop(); return *this; } auto& pop_back() noexcept(NO_EXCEPT) { this->_distribute<0>(); assert(!this->_back.empty()); this->_back.pop(); return *this; } }; } // namespace uni #line 9 "data_structure/foldable_deque.hpp" #line 2 "algebraic/opposite.hpp" #line 6 "algebraic/opposite.hpp" #line 9 "algebraic/opposite.hpp" #line 12 "algebraic/opposite.hpp" namespace uni { namespace algebraic { template<internal::magma M> struct opposite : std::conditional_t<internal::associative<M>, associative, uni::internal::dummy>, std::conditional_t<internal::commutative<M>, commutative, uni::internal::dummy> { using value_type = M::value_type; private: M _value; public: template<std::convertible_to<M> T> opposite(const T& v) : _value(v) {}; template<class... Args> requires std::constructible_from<value_type, Args...> opposite(Args&&... args) noexcept(NO_EXCEPT) : _value(std::forward<Args>(args)...) {} inline explicit operator value_type() const noexcept(NO_EXCEPT) { return this->_value.val(); } inline auto val() const noexcept(NO_EXCEPT) { return this->_value.val(); }; inline const value_type* operator->() const noexcept(NO_EXCEPT) { return this->_value.operator->(); }; inline value_type* operator->() noexcept(NO_EXCEPT) { return this->_value.operator->(); }; friend inline auto operator<=>(const opposite& lhs, const opposite& rhs) noexcept(NO_EXCEPT) { return lhs._value <=> rhs._value; }; friend inline bool operator==(const opposite& lhs, const opposite& rhs) noexcept(NO_EXCEPT) { return lhs._value == rhs._value; } friend inline opposite operator+(const opposite& lhs, const opposite& rhs) noexcept(NO_EXCEPT) { return rhs._value + lhs._value; } friend inline opposite operator-(const opposite& val) noexcept(NO_EXCEPT) requires internal::invertible<M> { return -val._value; } }; template<internal::magma M> struct make_opposite; template<internal::magma M> struct make_opposite<opposite<M>> { using type = M; }; template<internal::magma M> requires internal::commutative<M> struct make_opposite<M> { using type = M; }; template<internal::magma M> requires (!internal::commutative<M>) struct make_opposite<M> { using type = opposite<M>; }; template<internal::magma M> using make_opposite_t = make_opposite<M>::type; } // namespace algebraic } // namespace uni #line 12 "data_structure/foldable_deque.hpp" #line 14 "data_structure/foldable_deque.hpp" #line 2 "data_structure/foldable_stack.hpp" #line 6 "data_structure/foldable_stack.hpp" #line 10 "data_structure/foldable_stack.hpp" #line 2 "adaptor/queue_by_stack.hpp" #line 6 "adaptor/queue_by_stack.hpp" #line 9 "adaptor/queue_by_stack.hpp" namespace uni { template<class In, class Out = In> struct queue_by_stack { static_assert(std::same_as<typename In::value_type, typename Out::value_type>); static_assert(std::common_reference_with<typename In::size_type, typename Out::size_type>); using value_type = In::value_type; using size_type = std::common_type_t<typename In::size_type, typename Out::size_type>; protected: In _in; Out _out; private: inline void _shift() noexcept(NO_EXCEPT) { if(!this->_out.empty()) return; while(!this->_in.empty()) { this->_out.push(this->_in.top()); this->_in.pop(); } } public: queue_by_stack() noexcept = default; inline bool empty() const noexcept(NO_EXCEPT) { return this->_in.empty() && this->_out.empty(); } inline auto size() const noexcept(NO_EXCEPT) { return this->_in.size() + this->_out.size(); } inline decltype(auto) front() noexcept(NO_EXCEPT) { this->_shift(); assert(!this->_out.empty()); return this->_out.top(); } template<std::convertible_to<value_type> T = value_type> requires std::is_move_constructible_v<T> inline decltype(auto) front_or(T&& val) const noexcept(NO_EXCEPT) { if(this->empty()) return static_cast<value_type>(std::forward<T>(val)); else return this->front(); } inline auto& clear() noexcept(NO_EXCEPT) { this->_in.clear(), this->_out.clear(); return *this; } template<std::convertible_to<value_type> T = value_type> inline auto& push(T&& val) noexcept(NO_EXCEPT) { this->_in.push(std::forward<T>(val)); return *this; } template<class... Args> inline decltype(auto) emplace(Args&&... args) noexcept(NO_EXCEPT) { return this->_in.emplace(std::forward<Args>(args)...); } auto& pop() noexcept(NO_EXCEPT) { this->_shift(); assert(!this->_out.empty()); this->_out.pop(); return *this; } }; } // namespace uni #line 14 "data_structure/foldable_stack.hpp" #line 17 "data_structure/foldable_stack.hpp" #line 19 "data_structure/foldable_stack.hpp" namespace uni { template<class, template<class...> class = stack> struct foldable_stack : internal::unconstructible {}; template<algebraic::internal::monoid Monoid, template<class...> class Stack> struct foldable_stack<Monoid, Stack> { using fold_type = Monoid; using value_type = Monoid::value_type; using size_type = Stack<Monoid>::size_type; Stack<value_type> _val; Stack<fold_type> _acc; inline bool empty() const noexcept(NO_EXCEPT) { return this->_val.empty(); } inline auto size() const noexcept(NO_EXCEPT) { return this->_val.size(); } inline decltype(auto) top() const noexcept(NO_EXCEPT) { assert(!this->empty()); return this->_val.top(); } template<std::convertible_to<value_type> T = value_type> requires std::is_move_constructible_v<T> inline decltype(auto) top_or(T&& val) const noexcept(NO_EXCEPT) { if(this->empty()) return static_cast<value_type>(std::forward<T>(val)); else return this->top(); } inline auto fold() const noexcept(NO_EXCEPT) { if(this->empty()) return fold_type(); return this->_acc.top(); } template<std::convertible_to<fold_type> T = value_type> auto& push(T&& x) noexcept(NO_EXCEPT) { const auto acc = this->fold(); this->_val.push(x); this->_acc.push(acc + std::forward<T>(x)); return *this; } template<class... Args> decltype(auto) emplace(Args&&... args) noexcept(NO_EXCEPT) { const auto acc = this->fold(); decltype(auto) res = this->_val.emplace(std::forward<Args>(args)...); this->_acc.push(acc + res); return res; } inline auto& pop() noexcept(NO_EXCEPT) { this->_val.pop(), this->_acc.pop(); return *this; } }; template<actions::internal::operatable_action Action, template<class...> class Stack> struct foldable_stack<Action, Stack> : foldable_stack<typename Action::operand> { using foldable_stack<typename Action::operand>::foldable_stack; }; } // namespace uni #line 16 "data_structure/foldable_deque.hpp" namespace uni { namespace internal { template<algebraic::internal::monoid Monoid, template<class...> class Stack> using foldable_deque_base = deque_by_stack<foldable_stack<algebraic::make_opposite_t<Monoid>, Stack>, foldable_stack<Monoid, Stack>>; } // namespace internal template<class, template<class...> class = stack> struct foldable_deque : internal::unconstructible {}; template<algebraic::internal::monoid Monoid, template<class...> class Stack> struct foldable_deque<Monoid, Stack> : internal::foldable_deque_base<Monoid, Stack> { using internal::foldable_deque_base<Monoid, Stack>::foldable_deque_base; inline auto fold() const noexcept(NO_EXCEPT) { return Monoid(this->_front.fold()) + this->_back.fold(); } }; template<actions::internal::operatable_action Action, template<class...> class Stack> struct foldable_deque<Action, Stack> : foldable_deque<typename Action::operand> { using foldable_deque<typename Action::operand>::foldable_deque; }; } // namespace uni #line 2 "data_structure/foldable_queue.hpp" #line 6 "data_structure/foldable_queue.hpp" #line 9 "data_structure/foldable_queue.hpp" #line 12 "data_structure/foldable_queue.hpp" #line 14 "data_structure/foldable_queue.hpp" #line 16 "data_structure/foldable_queue.hpp" namespace uni { namespace internal { template<algebraic::internal::monoid Monoid, template<class...> class Stack> using foldable_queue_base = queue_by_stack<foldable_stack<Monoid, Stack>, foldable_stack<algebraic::make_opposite_t<Monoid>, Stack>>; } // namespace internal template<class, template<class...> class = stack> struct foldable_queue : internal::unconstructible {}; template<algebraic::internal::monoid Monoid, template<class...> class Stack> struct foldable_queue<Monoid, Stack> : internal::foldable_queue_base<Monoid, Stack> { using internal::foldable_queue_base<Monoid, Stack>::foldable_queue_base; inline auto fold() const noexcept(NO_EXCEPT) { return Monoid(this->_out.fold()) + this->_in.fold(); } }; template<actions::internal::operatable_action Action, template<class...> class Stack> struct foldable_queue<Action, Stack> : foldable_queue<typename Action::operand> { using foldable_queue<typename Action::operand>::foldable_queue; }; } // namespace uni #line 2 "data_structure/kth_element.hpp" #line 11 "data_structure/kth_element.hpp" #line 15 "data_structure/kth_element.hpp" namespace uni { // Thanks to: https://qiita.com/drken/items/1b7e6e459c24a83bb7fd template< class T, std::ranges::output_range<T> Container = std::vector<T>, std::strict_weak_order<T, T> Comparer = std::less<T>, std::strict_weak_order<T, T> RevComparer = std::greater<T>, std::integral Size = internal::size_t > struct kth_element { using value_type = T; using size_type = Size; protected: size_type _k; std::priority_queue<T, Container, Comparer> _small; std::priority_queue<T, Container, RevComparer> _large; public: kth_element(const size_type k = 0) noexcept(NO_EXCEPT) : _k(k + 1) { assert(k >= 0); } inline bool has() const noexcept(NO_EXCEPT) { return std::ssize(this->_small) == this->_k; } inline value_type value() const noexcept(NO_EXCEPT) { return this->_small.top(); } inline std::optional<value_type> get() const noexcept(NO_EXCEPT) { if(this->has()) return this->value(); return {}; } template<std::convertible_to<T> U = T> inline auto value_or(U&& v) const noexcept(NO_EXCEPT) { return this->get().value_or(std::forward<U>(v)); } inline void push(const value_type& v) noexcept(NO_EXCEPT) { if(std::ssize(this->_small) < this->_k) { this->_small.push(v); return; } const auto kth = this->_small.top(); if(Comparer{}(v, kth)) { this->_small.pop(); this->_small.push(v); this->_large.push(kth); } else { this->_large.push(v); } } inline void pop() noexcept(NO_EXCEPT) { assert(this->has()); this->_small.pop(); if(this->_large.empty()) return; const auto v = this->_large.top(); this->_large.pop(); this->_small.push(v); } }; } // namespace uni #line 2 "data_structure/lazy_segment_tree.hpp" #line 12 "data_structure/lazy_segment_tree.hpp" #line 15 "data_structure/lazy_segment_tree.hpp" #line 21 "data_structure/lazy_segment_tree.hpp" #line 24 "data_structure/lazy_segment_tree.hpp" #line 26 "data_structure/lazy_segment_tree.hpp" #line 29 "data_structure/lazy_segment_tree.hpp" namespace uni { namespace internal { namespace lazy_segment_tree_impl { // Thanks to: atcoder::lazy_segtree template<actions::internal::full_action Action> requires algebraic::internal::monoid<typename Action::operand> && algebraic::internal::monoid<typename Action::operation> struct core { using size_type = internal::size_t; using action = Action; using operand = typename Action::operand; using operation = typename Action::operation; private: size_type _n = 0, _size = 0, _depth = 0; std::valarray<size_type> _lengths; std::valarray<operand> _values; std::valarray<operation> _lazy; inline void _pull(const size_type p) noexcept(NO_EXCEPT) { this->_values[p] = this->_values[p << 1] + this->_values[p << 1 | 1]; } inline void _all_apply(const size_type p, const operation& f) noexcept(NO_EXCEPT) { this->_values[p] = action::mapping(action::power(f, this->_lengths[p]), this->_values[p]); if(p < this->_size) this->_lazy[p] = f + this->_lazy[p]; } inline void _push(const size_type p) noexcept(NO_EXCEPT) { this->_all_apply(p << 1, this->_lazy[p]); this->_all_apply(p << 1 | 1, this->_lazy[p]); this->_lazy[p] = operation{}; } inline void _init() noexcept(NO_EXCEPT) { REPD(p, 1, this->_size) { this->_lengths[p] = this->_lengths[p << 1] + this->_lengths[p << 1 | 1]; this->_pull(p); } } public: core() noexcept = default; explicit core(const size_type n) noexcept(NO_EXCEPT) : _n(n), _size(std::bit_ceil(uni::to_unsigned(n))), _depth(std::countr_zero(uni::to_unsigned(this->_size))), _lengths(this->_size << 1), _values(this->_size << 1), _lazy(this->_size) {} inline size_type size() const noexcept(NO_EXCEPT) { return this->_n; } inline size_type allocated() const noexcept(NO_EXCEPT) { return this->_values.size(); } inline size_type depth() const noexcept(NO_EXCEPT) { return this->_depth; } inline operand fold_all() const noexcept(NO_EXCEPT) { return this->_values[1]; } inline void fill( const operand& v = operand()) noexcept(NO_EXCEPT) { REP(p, 0, this->_n) { this->_lengths[this->_size + p] = 1, this->_values[this->_size + p] = v; } this->_init(); } template<std::input_iterator I, std::sentinel_for<I> S> inline void assign(I first, S last) noexcept(NO_EXCEPT) { if constexpr(std::sized_sentinel_for<operand, I>) { assert(std::ranges::distance(first, last) == this->_n); } size_type p = 0; for(auto itr=first; itr!=last; ++itr, ++p) { this->_lengths[this->_size + p] = 1, this->_values[this->_size + p] = static_cast<operand>(*itr); } this->_init(); } inline void set(size_type p, const operand& x) noexcept(NO_EXCEPT) { p += this->_size; FORD(i, 1, this->_depth) this->_push(p >> i); this->_values[p] = x; FOR(i, 1, this->_depth) this->_pull(p >> i); } inline void add(size_type p, const operand& x) noexcept(NO_EXCEPT) { p += this->_size; FORD(i, 1, this->_depth) this->_push(p >> i); this->_values[p] = this->_values[p] + x; FOR(i, 1, this->_depth) this->_pull(p >> i); } inline operand get(size_type p) noexcept(NO_EXCEPT) { p += this->_size; FORD(i, 1, this->_depth) this->_push(p >> i); return this->_values[p]; } inline operand fold(size_type l, size_type r) noexcept(NO_EXCEPT) { if(l == r) return {}; l += this->_size; r += this->_size; FORD(i, 1, this->_depth) { if(((l >> i) << i) != l) this->_push(l >> i); if(((r >> i) << i) != r) this->_push((r - 1) >> i); } operand sml = operand{}, smr = operand{}; while(l < r) { if(l & 1) sml = sml + this->_values[l++]; if(r & 1) smr = this->_values[--r] + smr; l >>= 1; r >>= 1; } return sml + smr; } inline void apply(size_type p, const operation& f) noexcept(NO_EXCEPT) { p += this->_size; FORD(i, 1, this->_depth) this->_push(p >> i); this->_values[p] = action::mapping(action::power(f, this->_lengths[p]), this->_values[p]); FOR(i, 1, this->_depth) this->_pull(p >> i); } inline void apply(size_type l, size_type r, const operation& f) noexcept(NO_EXCEPT) { if(l == r) return; l += this->_size; r += this->_size; FORD(i, 1, this->_depth) { if(((l >> i) << i) != l) this->_push(l >> i); if(((r >> i) << i) != r) this->_push((r - 1) >> i); } { size_type l2 = l, r2 = r; while(l < r) { if(l & 1) this->_all_apply(l++, f); if(r & 1) this->_all_apply(--r, f); l >>= 1; r >>= 1; } l = l2; r = r2; } FOR(i, 1, this->_depth) { if(((l >> i) << i) != l) this->_pull(l >> i); if(((r >> i) << i) != r) this->_pull((r - 1) >> i); } } template<class F> inline size_type max_right(size_type l, F&& f) noexcept(NO_EXCEPT) { assert(0 <= l && l <= _n); assert(f(operand{})); if(l == _n) return _n; l += this->_size; FORD(i, 1, this->_depth) this->_push(l >> i); operand sm; do { while(l % 2 == 0) l >>= 1; if(!f(sm + this->_values[l])) { while(l < this->_size) { this->_push(l); l = (2 * l); if(f(sm + this->_values[l])) { sm = sm + this->_values[l]; l++; } } return l - this->_size; } sm = sm + this->_values[l]; l++; } while((l & -l) != l); return _n; } template<class F> inline size_type min_left(size_type r, F&& f) noexcept(NO_EXCEPT) { assert(0 <= r && r <= _n); assert(f(operand{})); if(r == 0) return 0; r += this->_size; FORD(i, 1, this->_depth) this->_push((r - 1) >> i); operand sm; do { r--; while(r > 1 && (r % 2)) r >>= 1; if(!f(this->_values[r] + sm)) { while(r < this->_size) { this->_push(r); r = (2 * r + 1); if(f(this->_values[r] + sm)) { sm = this->_values[r] + sm; r--; } } return r + 1 - this->_size; } sm = this->_values[r] + sm; } while((r & -r) != r); return 0; } }; } // namespace lazy_segment_tree_impl } // namespace internal template<class T> struct lazy_segment_tree : lazy_segment_tree<actions::make_full_t<T>> { using lazy_segment_tree<actions::make_full_t<T>>::lazy_segment_tree; }; template<actions::internal::full_action Action> requires internal::available<internal::lazy_segment_tree_impl::core<Action>> struct lazy_segment_tree<Action> { using action = Action; using operand = Action::operand; using operation = Action::operation; private: using core = internal::lazy_segment_tree_impl::core<action>; core _impl; public: using value_type = operand; using action_type = operation::value_type; using size_type = core::size_type; inline auto size() const noexcept(NO_EXCEPT) { return this->_impl.size(); } inline auto allocated() const noexcept(NO_EXCEPT) { return this->_impl.allocated(); } inline auto depth() const noexcept(NO_EXCEPT) { return this->_impl.depth(); } protected: inline size_type _positivize_index(const size_type p) const noexcept(NO_EXCEPT) { return p < 0 ? this->_impl.size() + p : p; } public: lazy_segment_tree() noexcept(NO_EXCEPT) : _impl() {} explicit lazy_segment_tree(const size_type n, const value_type& v = value_type()) noexcept(NO_EXCEPT) : _impl(n) { this->_impl.fill(v); } template<std::convertible_to<value_type> T> lazy_segment_tree(const std::initializer_list<T>& init_list) noexcept(NO_EXCEPT) : lazy_segment_tree(ALL(init_list)) {} template<std::input_iterator I, std::sized_sentinel_for<I> S> lazy_segment_tree(I first, S last) noexcept(NO_EXCEPT) : _impl(static_cast<size_type>(std::ranges::distance(first, last))) { this->assign(first, last); } template<std::ranges::input_range R> explicit lazy_segment_tree(R&& range) noexcept(NO_EXCEPT) : lazy_segment_tree(ALL(range)) {} template<std::convertible_to<value_type> T> inline auto& assign(const std::initializer_list<T>& init_list) noexcept(NO_EXCEPT) { return this->assign(ALL(init_list)); } template<std::input_iterator I, std::sentinel_for<I> S> inline auto& assign(I first, S last) noexcept(NO_EXCEPT) { this->_impl.assign(first, last); return *this; } template<std::ranges::input_range R> inline auto& assign(R&& range) noexcept(NO_EXCEPT) { return this->assign(ALL(range)); } inline auto& fill( const value_type& v = value_type()) noexcept(NO_EXCEPT) { this->impl.fill(v); return *this; } bool empty() const noexcept(NO_EXCEPT) { return this->_impl.size() == 0; } struct point_reference : internal::point_reference<lazy_segment_tree> { point_reference(lazy_segment_tree *const super, const size_type p) noexcept(NO_EXCEPT) : internal::point_reference<lazy_segment_tree>(super, super->_positivize_index(p)) { assert(0 <= this->_pos && this->_pos < this->_super->size()); } operator value_type() noexcept(NO_EXCEPT) { return this->_super->get(this->_pos); } auto val() noexcept(NO_EXCEPT) { return this->_super->get(this->_pos); } inline auto& operator=(const value_type& v) noexcept(NO_EXCEPT) { this->_super->set(this->_pos, v); return *this; } inline auto& operator+=(const value_type& v) noexcept(NO_EXCEPT) { this->_super->add(this->_pos, v); return *this; } inline auto& operator*=(const action_type& v) noexcept(NO_EXCEPT) { this->_super->apply(this->_pos, v); return *this; } }; struct range_reference : internal::range_reference<lazy_segment_tree> { range_reference(lazy_segment_tree *const super, const size_type l, const size_type r) noexcept(NO_EXCEPT) : internal::range_reference<lazy_segment_tree>(super, super->_positivize_index(l), super->_positivize_index(r)) { assert(0 <= this->_begin && this->_begin <= this->_end && this->_end <= this->_super->size()); } inline auto& operator*=(const action_type& v) noexcept(NO_EXCEPT) { this->_super->apply(this->_begin, this->_end, v); return *this; } inline auto fold() noexcept(NO_EXCEPT) { if(this->_begin == 0 && this->_end == this->_super->size()) return this->_super->fold(); return this->_super->fold(this->_begin, this->_end); } }; inline auto& set(size_type p, const value_type& v) noexcept(NO_EXCEPT) { p = this->_positivize_index(p), assert(0 <= p && p < this->_impl.size()); this->_impl.set(p, v); return *this; } inline auto& add(size_type p, const value_type& v) noexcept(NO_EXCEPT) { p = this->_positivize_index(p), assert(0 <= p && p < this->_impl.size()); this->_impl.add(p, v); return *this; } inline auto& apply(size_type l, size_type r, const action_type& v) noexcept(NO_EXCEPT) { l = this->_positivize_index(l), r = this->_positivize_index(r); assert(0 <= l && l <= r && r <= this->_impl.size()); this->_impl.apply(l, r, v); return *this; } inline auto& apply(const size_type p, const action_type& v) noexcept(NO_EXCEPT) { this->apply(p, p + 1, v); return *this; } inline auto& apply(const action_type& v) noexcept(NO_EXCEPT) { this->apply(0, this->_impl.size(), v); return *this; } inline auto get(size_type p) noexcept(NO_EXCEPT) { p = this->_positivize_index(p), assert(0 <= p && p < this->_impl.size()); return this->_impl.get(p); } inline auto operator[](const size_type p) noexcept(NO_EXCEPT) { return point_reference(this, p); } inline auto operator()(const size_type l, const size_type r) noexcept(NO_EXCEPT) { return range_reference(this, l, r); } inline auto fold(size_type l, size_type r) noexcept(NO_EXCEPT) { l = this->_positivize_index(l), r = this->_positivize_index(r); assert(0 <= l && l <= r && r <= this->_impl.size()); return this->_impl.fold(l, r); } inline auto fold() noexcept(NO_EXCEPT) { return this->_impl.fold_all(); } template<bool (*f)(value_type)> inline auto max_right(const size_type l) noexcept(NO_EXCEPT) { return this->max_right(l, [](operand x) { return f(x); }); } template<class F> inline auto max_right(const size_type l, F&& f) noexcept(NO_EXCEPT) { return this->_impl.max_right(l, std::forward<F>(f)); } template<bool (*f)(value_type)> inline auto min_left(const size_type r) noexcept(NO_EXCEPT) { return min_left(r, [](operand x) { return f(x); }); } template<class F> inline auto min_left(const size_type r, F&& f) noexcept(NO_EXCEPT) { return this->_impl.min_left(r, std::forward<F>(f)); } struct iterator; protected: using iterator_interface = internal::container_iterator_interface<value_type, lazy_segment_tree, iterator>; public: struct iterator : iterator_interface { using iterator_interface::iterator_interface; }; inline auto begin() noexcept(NO_EXCEPT) { return iterator(this, 0); } inline auto end() noexcept(NO_EXCEPT) { return iterator(this, this->_impl.size()); } inline auto rbegin() noexcept(NO_EXCEPT) { return std::make_reverse_iterator(this->end()); } inline auto rend() noexcept(NO_EXCEPT) { return std::make_reverse_iterator(this->begin()); } }; } // namespace uni #line 2 "data_structure/persistent_queue.hpp" #line 9 "data_structure/persistent_queue.hpp" #line 12 "data_structure/persistent_queue.hpp" #line 16 "data_structure/persistent_queue.hpp" namespace uni { // Thanks to: https://tk0-math.hatenablog.com/entry/2020/03/27/194150 template<class ValueType, u32 BUFFER_DEPTH = 20, class Allocator = std::allocator<ValueType>> struct persistent_queue { using value_type = ValueType; using size_type = internal::size_t; struct node_type; using node_handler = node_handlers::cloneable<Allocator>::template handler<node_type>; using node_pointer = typename node_handler::node_pointer; using allocator_type = typename node_handler::allocator_type; struct node_type { value_type value; node_pointer prev[BUFFER_DEPTH]; }; private: size_type _size = 0; node_pointer _head, _tail; [[no_unique_address]] node_handler _node_handler; public: explicit persistent_queue(const allocator_type& allocator = allocator_type()) noexcept(NO_EXCEPT) : _node_handler(allocator) {} persistent_queue(const persistent_queue& source, const allocator_type& allocator) noexcept(NO_EXCEPT) : _size(source._size), _head(source._head), _tail(source._tail), _node_handler(allocator) {} persistent_queue(persistent_queue&& source, const allocator_type& allocator) noexcept(NO_EXCEPT) : _size(source._size), _head(source._head), _tail(source._tail), _node_handler(allocator) {} inline auto clone() const noexcept(NO_EXCEPT) { return *this; } inline bool empty() const noexcept(NO_EXCEPT) { return this->_size == 0; } inline size_type size() const noexcept(NO_EXCEPT) { return this->_size; } inline value_type front() const noexcept(NO_EXCEPT) { assert(!this->empty()); return this->_head->value; } template<std::convertible_to<value_type> T = value_type> requires std::is_move_constructible_v<T> inline value_type front_or(T&& v) const noexcept(NO_EXCEPT) { if(this->empty()) return static_cast<value_type>(std::forward<T>(v)); else return this->front(); } inline value_type back() const noexcept(NO_EXCEPT) { assert(!this->empty()); return this->_tail->value; } template<std::convertible_to<value_type> T = value_type> requires std::is_move_constructible_v<T> inline value_type back_or(T&& v) const noexcept(NO_EXCEPT) { if(this->empty()) return static_cast<value_type>(std::forward<T>(v)); else return this->back(); } inline auto& clear() noexcept(NO_EXCEPT) { this->_head.reset(), this->_tail.reset(); this->_size = 0; return *this; } template<std::convertible_to<value_type> T = value_type> auto& push(T&& x) noexcept(NO_EXCEPT) { node_pointer node = this->_node_handler.create(x); node->prev[0] = this->_tail; REP(i, 1, BUFFER_DEPTH) { node_pointer prev = node->prev[i - 1]; if(prev) node->prev[i] = prev->prev[i - 1]; else break; } if(!this->_head) this->_head = node; this->_tail = node; ++this->_size; return *this; } auto& pop() noexcept(NO_EXCEPT) { assert(!this->empty()); if(!this->_head || !this->_tail || this->_size == 1) { this->clear(); return *this; } auto index = to_unsigned(this->_size - 2); node_pointer node = this->_tail; while(index != 0) { const size_type msb = uni::highest_bit_pos(index); index -= 1 << msb; node = node->prev[msb]; } this->_head = node; --this->_size; return *this; } }; namespace pmr { template<class T, u32 BUFFER_DEPTH = 20> using persistent_queue = uni::persistent_queue<T, BUFFER_DEPTH, std::pmr::polymorphic_allocator<T>>; } // namesapce pmr } // namespace uni #line 2 "data_structure/persistent_stack.hpp" #line 7 "data_structure/persistent_stack.hpp" #line 10 "data_structure/persistent_stack.hpp" #line 13 "data_structure/persistent_stack.hpp" namespace uni { template<class ValueType, class Allocator = std::allocator<ValueType>> struct persistent_stack { using value_type = ValueType; using size_type = internal::size_t; struct node_type; using node_handler = node_handlers::cloneable<Allocator>::template handler<node_type>; using allocator_type = typename node_handler::allocator_type; using node_pointer = typename node_handler::node_pointer; struct node_type { value_type value; node_pointer next; node_type(node_pointer _next, value_type _value) noexcept(NO_EXCEPT) : value(_value), next(_next) {} template<class... Args> node_type(node_pointer _next, Args&&... args) noexcept(NO_EXCEPT) : value(std::forward<Args>(args)...), next(_next) {} }; private: size_type _size = 0; node_pointer _head; [[no_unique_address]] node_handler _node_handler; public: explicit persistent_stack(const allocator_type& allocator = allocator_type()) noexcept(NO_EXCEPT) : _node_handler(allocator) {}; persistent_stack(const persistent_stack& source, const allocator_type& allocator) noexcept(NO_EXCEPT) : _size(source._size), _head(source._head), _node_handler(allocator) {}; persistent_stack(persistent_stack&& source, const allocator_type& allocator) noexcept(NO_EXCEPT) : _size(source._size), _head(source._head), _node_handler(allocator) {}; inline auto clone() const noexcept(NO_EXCEPT) { return *this; } inline bool empty() const noexcept(NO_EXCEPT) { return !this->_head; } inline size_type size() const noexcept(NO_EXCEPT) { return this->_size; } inline value_type top() const noexcept(NO_EXCEPT) { assert(!this->empty()); return this->_head->value; } template<std::convertible_to<value_type> T = value_type> requires std::is_move_constructible_v<T> inline value_type top_or(T&& v) const noexcept(NO_EXCEPT) { if(this->empty()) return static_cast<value_type>(std::forward<T>(v)); else return this->top(); } inline auto& clear() noexcept(NO_EXCEPT) { this->_head.reset(); this->_size = 0; return *this; } template<std::convertible_to<value_type> T = value_type> inline auto& push(T&& x) noexcept(NO_EXCEPT) { this->_head = this->_node_handler.create(this->_head, std::forward<T>(x)); ++this->_size; return *this; } template<class... Args> inline auto& emplace(Args&&... args) noexcept(NO_EXCEPT) { this->_head = this->_node_handler.create(this->_head, std::forward<Args>(args)...); ++this->_size; return this->_head->value; } inline auto& pop() noexcept(NO_EXCEPT) { assert(!this->empty()); this->_head = this->_head->next; --this->_size; return *this; } }; namespace pmr { template<class T> using persistent_stack = uni::persistent_stack<T, std::pmr::polymorphic_allocator<T>>; } // namesapce pmr } // namespace uni #line 2 "data_structure/red_black_tree.hpp" #line 13 "data_structure/red_black_tree.hpp" #line 17 "data_structure/red_black_tree.hpp" #line 23 "data_structure/red_black_tree.hpp" #line 25 "data_structure/red_black_tree.hpp" #line 27 "data_structure/red_black_tree.hpp" #line 29 "data_structure/red_black_tree.hpp" #line 32 "data_structure/red_black_tree.hpp" namespace uni { namespace internal { // Thanks to: http://blog.mitaki28.info/1447078746296/ template<class NodeHandler, class Derived, std::integral SizeType, class ValueType> struct red_black_tree_impl { using size_type = SizeType; using rank_type = int; using value_type = ValueType; enum class node_colors : std::int8_t { RED, BLACK }; struct node_type; using node_handler = typename NodeHandler::handler<node_type>; using allocator_type = typename node_handler::allocator_type; using node_pointer = typename node_handler::node_pointer; struct node_type { node_pointer left = node_handler::nil, right = node_handler::nil; node_colors color = node_colors::BLACK; size_type size = 0; rank_type rank = 0; inline constexpr bool is_leaf() const noexcept(NO_EXCEPT) { return this->left == node_handler::nil && this->right == node_handler::nil; } [[no_unique_address]] value_type data; node_type() noexcept = default; node_type(const value_type& _data, const size_type _size) noexcept(NO_EXCEPT) : size(_size), data(_data) {} node_type(const node_colors _color, const node_pointer& _left, const node_pointer& _right) noexcept(NO_EXCEPT) : left(_left), right(_right), color(_color) {} }; private: using derived = Derived; inline auto* _derived() noexcept(NO_EXCEPT) { return static_cast<derived*>(this); } inline const auto* _derived() const noexcept(NO_EXCEPT) { return static_cast<const derived*>(this); } [[no_unique_address]] node_handler _node_handler; public: void pull(const node_pointer& tree) const noexcept(NO_EXCEPT) { if(tree == node_handler::nil) return; if(tree->is_leaf()) return; tree->size = tree->left->size + tree->right->size; tree->rank = tree->left->rank + (tree->left->color == node_colors::BLACK); this->_derived()->pull(tree); } void push(node_pointer& tree) noexcept(NO_EXCEPT) { if(tree == node_handler::nil) return; this->clone(tree); this->_derived()->push(tree); this->pull(tree); } inline void clone(node_pointer& tree) noexcept(NO_EXCEPT) { tree = this->_node_handler.clone(tree); } node_pointer create(const value_type& val, const size_type size) noexcept(NO_EXCEPT) { if(size == 0) return node_handler::nil; return this->_node_handler.create(val, size); } node_pointer create(const node_colors color, node_pointer left, node_pointer right) noexcept(NO_EXCEPT) { this->push(left); this->push(right); return this->_node_handler.create(color, std::move(left), std::move(right)); } void dispose(const node_pointer& tree) noexcept(NO_EXCEPT) { if(this->_node_handler.disposable(tree)) { this->dispose(tree->left); this->dispose(tree->right); this->_node_handler.dispose(tree); } } private: void _as_root(node_pointer& node) { this->clone(node); if(node->color == node_colors::RED) node->color = node_colors::BLACK; this->push(node); } void _merge(node_pointer& tree, node_pointer left, node_pointer right) noexcept(NO_EXCEPT) { if(left->rank < right->rank) { this->push(right); this->_merge(tree, left, right->left); if(right->color == node_colors::BLACK && tree->color == node_colors::RED && tree->left->color == node_colors::RED) { tree->color = node_colors::BLACK; if(right->right->color == node_colors::BLACK) { this->clone(right); right->color = node_colors::RED; right->left = tree->right; this->pull(right); this->clone(tree); tree->right = std::move(right); } else { this->clone(right->right); right->right->color = node_colors::BLACK; this->clone(right); right->left = tree; right->color = node_colors::RED; tree = std::move(right); } } else { this->clone(right); right->left = tree; tree = std::move(right); } } else if(left->rank > right->rank) { this->push(left); this->_merge(tree, left->right, right); if(left->color == node_colors::BLACK && tree->color == node_colors::RED && tree->right->color == node_colors::RED) { tree->color = node_colors::BLACK; if(left->left->color == node_colors::BLACK) { this->clone(left); left->color = node_colors::RED; left->right = tree->left; this->pull(left); this->clone(tree); tree->left = std::move(left); } else { this->clone(left->left); left->left->color = node_colors::BLACK; this->clone(left); left->right = tree; left->color = node_colors::RED; tree = std::move(left); } } else { this->clone(left); left->right = tree; tree = std::move(left); } } else { tree = this->create(node_colors::RED, left, right); } this->pull(tree); } void _split(node_pointer tree, const size_type pos, node_pointer& left, node_pointer& right) { if(tree == node_handler::nil) { left = right = node_handler::nil; return; } this->push(tree); if(tree->is_leaf()) { left = this->create(tree->data, pos); right = this->create(tree->data, tree->size - pos); return; } auto l = std::move(tree->left), r = std::move(tree->right); this->_node_handler.dispose(tree); if(pos < l->size) { this->_split(std::move(l), pos, left, right); this->_as_root(r); this->merge(right, right, std::move(r)); this->_as_root(left); return; } if(pos > l->size) { this->_split(std::move(r), pos - l->size, left, right); this->_as_root(l); this->merge(left, std::move(l), left); this->_as_root(right); return; } left = std::move(l), right = std::move(r); this->_as_root(left), this->_as_root(right); } public: explicit red_black_tree_impl(const allocator_type& allocator = allocator_type()) noexcept(NO_EXCEPT) : _node_handler(allocator) {} template<std::random_access_iterator I, std::sized_sentinel_for<I> S> requires std::constructible_from<value_type, std::iter_value_t<I>> node_pointer build(I first, S last) noexcept(NO_EXCEPT) { if(first == last) return node_handler::nil; if(std::ranges::next(first) == last) return this->create(value_type{ *first }, 1); const auto length = std::ranges::distance(first, last); const auto middle = std::ranges::next(first, std::bit_floor(to_unsigned(length - 1))); node_pointer tree; this->merge(tree, this->build(std::move(first), middle), this->build(middle, std::move(last))); return tree; } template<std::random_access_iterator I, std::sized_sentinel_for<I> S> requires std::constructible_from<value_type, typename std::iter_value_t<I>::first_type> && std::integral<typename std::iter_value_t<I>::second_type> node_pointer build(I first, S last) noexcept(NO_EXCEPT) { if(first == last) return node_handler::nil; if(std::ranges::next(first) == last) return this->create(value_type{ first->first }, first->second); const auto length = std::ranges::distance(first, last); const auto middle = std::ranges::next(first, std::bit_floor(to_unsigned(length - 1))); node_pointer tree; this->merge(tree, this->build(std::move(first), middle), this->build(middle, std::move(last))); return tree; } void split(const node_pointer& tree, const size_type pos, node_pointer& left, node_pointer& right) noexcept(NO_EXCEPT) { if(pos <= 0) { left = node_handler::nil; this->merge(right, this->create(value_type{}, -pos), tree); } else if(tree->size <= pos) { right = node_handler::nil; this->merge(left, tree, this->create(value_type{}, pos - tree->size)); } else { this->_split(tree, pos, left, right); } } void merge(node_pointer& tree, const node_pointer& left, const node_pointer& right) noexcept(NO_EXCEPT) { if(left == node_handler::nil) { tree = right; this->push(tree); } else if(right == node_handler::nil) { tree = left; this->push(tree); } else { this->_merge(tree, left, right); tree->color = node_colors::BLACK; } this->pull(tree); } }; } // namespace internal template<std::integral SizeType = i64, class NodeHandler = uni::node_handlers::reusing<std::allocator<SizeType>>> struct red_black_tree_context { static constexpr bool LEAF_ONLY = true; template<class Derived, class ValueType = internal::dummy> using substance = internal::red_black_tree_impl<NodeHandler, Derived, SizeType, ValueType>; }; template<std::integral SizeType = i64, class Allocator = std::allocator<SizeType>> struct persistent_red_black_tree_context { static constexpr bool LEAF_ONLY = true; template<class Derived, class ValueType = internal::dummy> using substance = internal::red_black_tree_impl<uni::node_handlers::cloneable<Allocator>, Derived, SizeType, ValueType>; }; namespace pmr { template<std::integral SizeType = i64> using red_black_tree_context = uni::red_black_tree_context<SizeType, std::pmr::polymorphic_allocator<SizeType>>; template<std::integral SizeType = i64> using persistent_red_black_tree_context = uni::persistent_red_black_tree_context<SizeType, std::pmr::polymorphic_allocator<SizeType>>; } // namespace pmr } // namespace uni #line 2 "data_structure/removable_priority_queue.hpp" #line 8 "data_structure/removable_priority_queue.hpp" #line 12 "data_structure/removable_priority_queue.hpp" namespace uni { namespace internal { template<class T, class... Ts> concept can_removable_priority_queue = sizeof...(Ts) == 0 && requires (T pq, typename T::value_type v) { { pq.size() } -> std::same_as<typename T::size_type>; { pq.empty() } -> std::same_as<bool>; pq.top(); pq.pop(); pq.push(v); pq.emplace(v); }; } // namespace internal template<class... Ts> struct removable_priority_queue {}; template<class ValueType, class... Args> requires (!internal::can_removable_priority_queue<ValueType, Args...>) && requires () { typename std::priority_queue<ValueType, Args...>; } struct removable_priority_queue<ValueType, Args...> : removable_priority_queue<std::priority_queue<ValueType, Args...>> { using removable_priority_queue<std::priority_queue<ValueType, Args...>>::removable_priority_queue; }; template<internal::can_removable_priority_queue PriorityQueue> struct removable_priority_queue<PriorityQueue> : removable_priority_queue<PriorityQueue, internal::dummy> { using removable_priority_queue<PriorityQueue, internal::dummy>::removable_priority_queue; }; template< internal::can_removable_priority_queue PriorityQueue, class Multiset > struct removable_priority_queue<PriorityQueue, Multiset> : PriorityQueue { using base_type = PriorityQueue; using multiset_type = Multiset; using size_type = typename PriorityQueue::size_type; using value_type = typename PriorityQueue::value_type; using const_reference = typename PriorityQueue::const_reference; private: using self = removable_priority_queue<PriorityQueue, Multiset>; base_type _deleted; multiset_type _elements; static constexpr bool CHECK_EXISTANCE = !std::same_as<multiset_type, internal::dummy>; void _delete() noexcept(NO_EXCEPT) { while(!this->_deleted.empty() && this->_deleted.top() == this->base_type::top()) { this->base_type::pop(); this->_deleted.pop(); } } public: using base_type::base_type; size_type size() noexcept(NO_EXCEPT) { if constexpr(!self::CHECK_EXISTANCE) { assert(this->base_type::size() >= this->_deleted.size()); } return this->base_type::size() - this->_deleted.size(); } size_type empty() noexcept(NO_EXCEPT) { if constexpr(!self::CHECK_EXISTANCE) { assert(this->base_type::size() >= this->_deleted.size()); } return this->base_type::size() == this->_deleted.size(); } void push(const value_type& v) noexcept(NO_EXCEPT) { if constexpr(self::CHECK_EXISTANCE) this->_elements.insert(v); return this->base_type::push(v); } void push(value_type&& v) noexcept(NO_EXCEPT) { if constexpr(self::CHECK_EXISTANCE) this->_elements.insert(std::move(v)); return this->base_type::push(std::move(v)); } template<class... Args> decltype(auto) emplace(Args&&... args) noexcept(NO_EXCEPT) { if constexpr(self::CHECK_EXISTANCE) this->_elements.emplace(args...); return this->base_type::emplace(std::forward<Args>(args)...); } std::conditional_t<self::CHECK_EXISTANCE, bool, void> remove(const value_type& v) noexcept(NO_EXCEPT) { if constexpr(self::CHECK_EXISTANCE) { if(!this->_elements.contains(v)) return false; } this->_deleted.push(v); if constexpr(self::CHECK_EXISTANCE) return true; } std::conditional_t<self::CHECK_EXISTANCE, bool, void> remove(value_type&& v) noexcept(NO_EXCEPT) { if constexpr(self::CHECK_EXISTANCE) { if(!this->_elements.contains(v)) return false; } this->_deleted.push(std::move(v)); if constexpr(self::CHECK_EXISTANCE) return true; } template<class... Args> std::conditional_t<self::CHECK_EXISTANCE, bool, void> eliminate(Args&&... args) noexcept(NO_EXCEPT) { if constexpr(self::CHECK_EXISTANCE) { if(!this->_elements.contains({ args... })) return false; } this->_deleted.emplace(std::forward<Args>(args)...); if constexpr(self::CHECK_EXISTANCE) return true; } const_reference top() noexcept(NO_EXCEPT) { this->_delete(); return this->base_type::top(); } void pop() noexcept(NO_EXCEPT) { this->_delete(); this->base_type::pop(); } }; } // namespace uni #line 2 "data_structure/restorable_stack.hpp" #line 6 "data_structure/restorable_stack.hpp" #line 8 "data_structure/restorable_stack.hpp" namespace uni { template<class T, class ID = int, template<class,class> class storage = std::unordered_map> struct restorable_stack { using value_type = T; using key_type = ID; protected: struct node; using node_ptr = std::shared_ptr<node>; struct node { std::optional<value_type> val = std::nullopt; node_ptr parent; }; node_ptr _current; storage<key_type, node_ptr> _storage; public: restorable_stack() noexcept(NO_EXCEPT) { this->clear(); }; inline bool empty() const noexcept(NO_EXCEPT) { return !this->_current->val.has_value(); } inline bool stored(const key_type& x) const noexcept(NO_EXCEPT) { return this->_storage.count(x); } inline const value_type& top() const noexcept(NO_EXCEPT) { return this->_current->val.value(); } inline auto get() const noexcept(NO_EXCEPT) { return this->_current.val; } template<std::convertible_to<T> U = T> inline auto top_or(U &&v) const noexcept(NO_EXCEPT) { return this->_current->val.value_or(std::forward<U>(v)); } inline auto& push(const value_type& x) noexcept(NO_EXCEPT) { this->_current.reset(new node{ x, this->_current }); return *this; } inline auto& pop() noexcept(NO_EXCEPT) { this->_current = this->_current->parent; return *this; } inline auto& save(const key_type& x) noexcept(NO_EXCEPT) { this->_storage[x] = this->_current; return *this; } inline auto& load(const key_type& x) noexcept(NO_EXCEPT) { assert(this->stored(x)); this->_current = this->_storage[x]; return *this; } inline auto& clear() noexcept(NO_EXCEPT) { this->_current.reset(new node{}); return *this; } inline auto& load_or_clear(const key_type& x) noexcept(NO_EXCEPT) { if(this->stored(x)) this->load(x); else this->clear(); return *this; } }; } // namespace uni #line 2 "data_structure/segment_tree_rooter.hpp" #line 5 "data_structure/segment_tree_rooter.hpp" #line 9 "data_structure/segment_tree_rooter.hpp" namespace uni { template<std::integral SizeType> struct segment_tree_rooter { using size_type = SizeType; private: size_type _n = 0; public: segment_tree_rooter() noexcept = default; explicit segment_tree_rooter(const size_type n) noexcept(NO_EXCEPT) : _n(n) {}; inline size_type size() const noexcept(NO_EXCEPT) { return this->_n; } inline size_type allocated() const noexcept(NO_EXCEPT) { return (this->_n << 1) - 1; } template<std::invocable<size_type> F> void range_to_nodes(size_type l, size_type r, F&& f) noexcept(NO_EXCEPT) { l += this->_n; r += this->_n; while(l < r) { if(l & 1) f(l++ - 1); if(r & 1) f(--r - 1); l >>= 1; r >>= 1; } } size_type point_to_node(const size_type p) noexcept(NO_EXCEPT) { return this->_n + p - 1; } template<std::invocable<size_type> F> void point_to_path(size_type p, F&& f) noexcept(NO_EXCEPT) { p += this->_n; while(p > 0) f(p - 1), p >>= 1; } }; } #line 2 "data_structure/wavelet_matrix.hpp" #line 19 "data_structure/wavelet_matrix.hpp" #line 22 "data_structure/wavelet_matrix.hpp" #line 27 "data_structure/wavelet_matrix.hpp" #line 2 "adaptor/gnu/hash_table.hpp" #line 5 "adaptor/gnu/hash_table.hpp" #include <stdexcept> #include <ext/pb_ds/assoc_container.hpp> #line 11 "adaptor/gnu/hash_table.hpp" namespace uni { namespace gnu { template<class Base> struct hash_table : Base { using key_type = typename Base::key_type; using value_type = typename Base::value_type; using mapped_type = typename Base::mapped_type; inline bool contains(const key_type& key) const noexcept(NO_EXCEPT) { return this->Base::find(key) != this->Base::end(); } template<class K, class T> inline decltype(auto) emplace(K&& key, T&& val) noexcept(NO_EXCEPT) { return this->Base::insert({ std::forward<K>(key), std::forward<T>(val) }); } mapped_type& at(const key_type& key) { auto itr = this->Base::find(key); if(itr == this->Base::end()) throw std::out_of_range("hash_table::at()"); return itr->second; }; const mapped_type& at(const key_type & key) const { auto itr = this->Base::find(key); if(itr == this->Base::end()) throw std::out_of_range("hash_table::at()"); return itr->second; }; }; template<class Key, class T, class Hash = void> struct cc_hash_table : hash_table<__gnu_pbds::cc_hash_table<Key, T, Hash>> { using hash_table<__gnu_pbds::cc_hash_table<Key, T, Hash>>::hash_table; }; template<class Key, class T> struct cc_hash_table<Key, T, void> : hash_table<__gnu_pbds::cc_hash_table<Key, T>> { using hash_table<__gnu_pbds::cc_hash_table<Key, T>>::hash_table; }; template<class Key, class T, class Hash = void> struct gp_hash_table : hash_table<__gnu_pbds::gp_hash_table<Key, T, Hash>> { using hash_table<__gnu_pbds::gp_hash_table<Key, T, Hash>>::hash_table; }; template<class Key, class T> struct gp_hash_table<Key, T, void> : hash_table<__gnu_pbds::gp_hash_table<Key, T>> { using hash_table<__gnu_pbds::gp_hash_table<Key, T>>::hash_table; }; } // namespace gnu } // namespace uni #line 29 "data_structure/wavelet_matrix.hpp" #line 31 "data_structure/wavelet_matrix.hpp" #line 2 "iterable/compressed.hpp" #line 10 "iterable/compressed.hpp" #line 15 "iterable/compressed.hpp" #line 17 "iterable/compressed.hpp" namespace uni { template<class T, class Container = vector<internal::size_t>> struct compressed : Container { using size_type = internal::size_t; using value_type = T; std::vector<value_type> values; public: compressed() noexcept(NO_EXCEPT) = default; template<std::input_iterator I, std::sized_sentinel_for<I> S> compressed(I first, S last) noexcept(NO_EXCEPT) { this->values.assign(first, last); std::ranges::sort(ALL(this->values)); this->values.erase(std::unique(ALL(this->values)), std::ranges::end(this->values)); this->resize(std::ranges::distance(first, last)); { auto itr = std::ranges::begin(*this); auto e = first; for(; e!=last; ++itr, ++e) *itr = this->rank(*e); } } template<std::ranges::input_range R> explicit compressed(R&& range) noexcept(NO_EXCEPT) : compressed(ALL(range)) {} inline size_type rank_sup() const { return static_cast<size_type>(this->values.size()); } inline size_type rank(const value_type& val) const noexcept(NO_EXCEPT) { return static_cast<size_type>( std::ranges::distance(std::ranges::begin(this->values), std::ranges::lower_bound(this->values, val)) ); } inline size_type rank2(const value_type& val) const noexcept(NO_EXCEPT) { return static_cast<size_type>( std::ranges::distance(std::ranges::begin(this->values), std::ranges::upper_bound(this->values, val)) ) - 1; } inline value_type value(const size_type rank) const noexcept(NO_EXCEPT) { assert(0 <= rank && rank < this->rank_sup()); return this->values[rank]; } }; template<std::input_iterator I, std::sized_sentinel_for<I> S> explicit compressed(I, S) -> compressed<typename std::iterator_traits<I>::value_type>; template<std::ranges::input_range R> explicit compressed(R&&) -> compressed<typename std::ranges::range_value_t<R>>; } // namespace uni #line 33 "data_structure/wavelet_matrix.hpp" #line 35 "data_structure/wavelet_matrix.hpp" #line 38 "data_structure/wavelet_matrix.hpp" namespace uni { namespace internal { namespace wavelet_matrix_impl { // Thanks to: https://github.com/NyaanNyaan/library/blob/master/data-structure-2d/wavelet-matrix.hpp template<std::unsigned_integral T, class MapType> requires std::same_as<T, typename MapType::key_type> struct base { using size_type = internal::size_t; using impl_type = T; private: size_type _n; int _bits; std::vector<bit_vector> _index; std::vector<std::vector<impl_type>> _sum; MapType _first_pos; impl_type _max = 0; public: base() = default; template<std::ranges::input_range R> explicit base(R&& range) noexcept(NO_EXCEPT) : base(ALL(range)) {} template<std::input_iterator I, std::sentinel_for<I> S> base(I first, S last) noexcept(NO_EXCEPT) { this->build(first, last); } template<std::convertible_to<impl_type> U> base(const std::initializer_list<U>& init_list) noexcept(NO_EXCEPT) : base(ALL(init_list)) {} inline size_type size() const noexcept(NO_EXCEPT) { return this->_n; } inline size_type bits() const noexcept(NO_EXCEPT) { return this->_bits; } template<std::ranges::input_range R> inline void build(R&& range) noexcept(NO_EXCEPT) { this->build(ALL(range)); } template<std::input_iterator I, std::sized_sentinel_for<I> S> __attribute__((optimize("O3"))) void build(I first, S last) noexcept(NO_EXCEPT) { this->_n = static_cast<size_type>(std::ranges::distance(first, last)); this->_max = first == last ? -1 : *std::ranges::max_element(first, last); this->_bits = std::bit_width(this->_max + 1); this->_index.assign(this->_bits, this->_n); std::vector<impl_type> bit(first, last), nxt(this->_n); this->_sum.assign(this->_bits + 1, std::vector<impl_type>(this->_n + 1)); { size_type i = 0; for(auto itr=first; itr!=last; ++i, ++itr) { assert(*itr >= 0); this->_sum[this->_bits][i + 1] = this->_sum[this->_bits][i] + *itr; } } REPD(h, this->_bits) { std::vector<size_type> vals; for(size_type i = 0; i < this->_n; ++i) { if((bit[i] >> h) & 1) this->_index[h].set(i); } this->_index[h].build(); std::array<typename std::vector<impl_type>::iterator, 2> itrs{ std::ranges::begin(nxt), std::ranges::next(std::ranges::begin(nxt), this->_index[h].zeros()) }; REP(i, this->_n) *itrs[this->_index[h].get(i)]++ = bit[i]; REP(i, this->_n) this->_sum[h][i + 1] = this->_sum[h][i] + nxt[i]; std::swap(bit, nxt); } REPD(i, this->_n) this->_first_pos[bit[i]] = static_cast<MapType::mapped_type>(i); } protected: inline auto get(const size_type k) const noexcept(NO_EXCEPT) { return this->_sum[this->_bits][k + 1] - this->_sum[this->_bits][k]; } auto select(const impl_type& v, const size_type rank) const noexcept(NO_EXCEPT) { if(v > this->_max) return this->_n; if(not this->_first_pos.contains(v)) return this->_n; size_type pos = this->_first_pos.at(v) + rank; REP(h, this->_bits) { if(uni::bit(v, h)) pos = this->_index[h].select1(pos - this->_index[h].zeros()); else pos = this->_index[h].select0(pos); } return pos; } auto kth_smallest(size_type *const l, size_type *const r, size_type *const k) const noexcept(NO_EXCEPT) { impl_type val = 0; for(size_type h = this->_bits - 1; h >= 0; --h) { size_type l0 = this->_index[h].rank0(*l), r0 = this->_index[h].rank0(*r); if(*k < r0 - l0) { *l = l0, *r = r0; } else { *k -= r0 - l0; val |= impl_type{1} << h; *l += this->_index[h].zeros() - l0; *r += this->_index[h].zeros() - r0; } } return val; } inline auto kth_smallest(size_type l, size_type r, size_type k) const noexcept(NO_EXCEPT) { return this->kth_smallest(&l, &r, &k); } auto kth_smallest_index(size_type l, size_type r, size_type k) const noexcept(NO_EXCEPT) { const impl_type val = this->kth_smallest(&l, &r, &k); size_type left = 0; REPD(h, this->_bits) { if(uni::bit(val, h)) left = this->_index[h].rank1(left) + this->_index[h].zeros(); else left = this->_index[h].rank0(left); } return this->select(val, l + k - left); } inline auto kth_largest(const size_type l, const size_type r, const size_type k) const noexcept(NO_EXCEPT) { return this->kth_smallest(l, r, r - l - k - 1); } inline auto kth_largest_index(const size_type l, const size_type r, const size_type k) const noexcept(NO_EXCEPT) { return this->kth_smallest_index(l, r, r - l - k - 1); } inline auto succ0(const size_type l, const size_type r, const size_type h) const noexcept(NO_EXCEPT) { return std::make_pair(this->_index[h].rank0(l), this->_index[h].rank0(r)); } inline auto succ1(const size_type l, const size_type r, const size_type h) const noexcept(NO_EXCEPT) { const size_type l0 = this->_index[h].rank0(l); const size_type r0 = this->_index[h].rank0(r); const size_type vals = this->_index[h].zeros(); return std::make_pair(l + vals - l0, r + vals - r0); } impl_type sum_in_range( const size_type l, const size_type r, const impl_type& x, const impl_type& y, const impl_type& cur, const size_type bit ) const noexcept(NO_EXCEPT) { if(l == r) return 0; if(bit == -1) { if(x <= cur && cur <= y) return cur * (r - l); return 0; } const impl_type nxt = (impl_type{1} << bit) | cur; const impl_type ones = ((impl_type{1} << bit) - 1) | nxt; if(ones < x || y < cur) return 0; if(x <= cur && ones <= y) return this->_sum[bit + 1][r] - this->_sum[bit + 1][l]; const size_type l0 = this->_index[bit].rank0(l), r0 = this->_index[bit].rank0(r); const size_type l1 = l - l0, r1 = r - r0; return this->sum_in_range(l0, r0, x, y, cur, bit - 1) + this->sum_in_range(this->_index[bit].zeros() + l1, this->_index[bit].zeros() + r1, x, y, nxt, bit - 1); } inline auto sum_in_range(const size_type l, const size_type r, const impl_type& x, const impl_type& y) const noexcept(NO_EXCEPT) { return this->sum_in_range(l, r, x, y, 0, this->_bits - 1); } inline auto sum_under(const size_type l, const size_type r, const impl_type& v) const noexcept(NO_EXCEPT) { return this->sum_in_range(l, r, 0, v - 1); } inline auto sum_over(const size_type l, const size_type r, const impl_type& v) const noexcept(NO_EXCEPT) { return this->sum_in_range(l, r, v + 1, std::numeric_limits<impl_type>::max()); } inline auto sum_or_under(const size_type l, const size_type r, const impl_type& v) const noexcept(NO_EXCEPT) { return this->sum_in_range(l, r, 0, v); } inline auto sum_or_over(const size_type l, const size_type r, const impl_type& v) const noexcept(NO_EXCEPT) { return this->sum_in_range(l, r, v, std::numeric_limits<impl_type>::max()); } inline auto sum(const size_type l, const size_type r) const noexcept(NO_EXCEPT) { return this->_sum[this->_bits][r] - this->_sum[this->_bits][l]; } auto count_under(size_type l, size_type r, const impl_type& y) const noexcept(NO_EXCEPT) { if(y >= (impl_type{1} << this->_bits)) return r - l; size_type res = 0; REPD(h, this->_bits) { bool f = (y >> h) & 1; size_type l0 = this->_index[h].rank0(l), r0 = this->_index[h].rank0(r); if(f) { res += r0 - l0; l += this->_index[h].zeros() - l0; r += this->_index[h].zeros() - r0; } else { l = l0; r = r0; } } return res; } inline auto count_or_under(const size_type l, const size_type r, const impl_type& v) const noexcept(NO_EXCEPT) { return this->count_under(l, r, v + 1); } inline auto count_or_over(const size_type l, const size_type r, const impl_type& v) const noexcept(NO_EXCEPT) { return r - l - this->count_under(l, r, v); } inline auto count_over(const size_type l, const size_type r, const impl_type& v) const noexcept(NO_EXCEPT) { return this->count_or_over(l, r, v + 1); } inline auto count_in_range(const size_type l, const size_type r, const impl_type& x, const impl_type& y) const noexcept(NO_EXCEPT) { return this->count_or_under(l, r, y) - this->count_under(l, r, x); } inline auto count_equal_to(const size_type l, const size_type r, const impl_type& v) const noexcept(NO_EXCEPT) { return this->count_in_range(l, r, v, v); } inline std::optional<impl_type> next(const size_type l, const size_type r, const impl_type& v, const size_type k) const noexcept(NO_EXCEPT) { const size_type rank = this->count_under(l, r, v) + k; if(rank < 0 || rank >= r - l) return {}; return { this->kth_smallest(l, r, rank) }; } inline std::optional<impl_type> prev(const size_type l, const size_type r, const impl_type& v, const size_type k) const noexcept(NO_EXCEPT) { const size_type rank = this->count_over(l, r, v) + k; if(rank < 0 || rank >= r - l) return {}; return this->kth_largest(l, r, rank); } }; } // namespace wavelet_matrix_impl } // namespace internal template<std::integral T, template<class...> class MapTemplate = gnu::gp_hash_table> struct compressed_wavelet_matrix; template<std::integral T, template<class...> class MapTemplate = gnu::gp_hash_table> struct wavelet_matrix : internal::wavelet_matrix_impl::base<std::make_unsigned_t<T>, MapTemplate<std::make_unsigned_t<T>, u32>> { using value_type = T; using impl_type = std::make_unsigned_t<T>; using map_type = MapTemplate<impl_type, u32>; using size_type = internal::size_t; using compressed = compressed_wavelet_matrix<value_type, MapTemplate>; private: using base = internal::wavelet_matrix_impl::base<impl_type, map_type>; public: protected: inline size_type _positivize_index(const size_type p) const noexcept(NO_EXCEPT) { return p < 0 ? this->size() + p : p; } public: using base::base; inline bool empty() const noexcept(NO_EXCEPT) { return this->size() == 0; } inline value_type get(size_type p) const noexcept(NO_EXCEPT) { p = this->_positivize_index(p), assert(0 <= p && p < this->size()); return this->base::get(p); } inline auto operator[](const size_type p) const noexcept(NO_EXCEPT) { return this->get(p); } inline auto select(const value_type& v, const size_type p) const noexcept(NO_EXCEPT) { return this->base::select(v, p); } struct iterator; struct range_reference; template<uni::interval_notation rng = uni::interval_notation::right_open> inline auto range(const size_type l, const size_type r) const noexcept(NO_EXCEPT) { if constexpr(rng == uni::interval_notation::right_open) return range_reference(this, l, r); if constexpr(rng == uni::interval_notation::left_open) return range_reference(this, l + 1, r + 1); if constexpr(rng == uni::interval_notation::open) return range_reference(this, l + 1, r); if constexpr(rng == uni::interval_notation::closed) return range_reference(this, l, r + 1); } inline auto range() const noexcept(NO_EXCEPT) { return range_reference(this, 0, this->size()); } inline auto operator()(const size_type l, const size_type r) const noexcept(NO_EXCEPT) { return range_reference(this, l, r); } inline auto subseq(const size_type p, const size_type c) const noexcept(NO_EXCEPT) { return range_reference(this, p, p+c); } inline auto subseq(const size_type p) const noexcept(NO_EXCEPT) { return range_reference(this, p, this->size()); } struct range_reference : internal::range_reference<const wavelet_matrix> { range_reference(const wavelet_matrix *const super, const size_type l, const size_type r) noexcept(NO_EXCEPT) : internal::range_reference<const wavelet_matrix>(super, super->_positivize_index(l), super->_positivize_index(r)) { assert(0 <= this->_begin && this->_begin <= this->_end && this->_end <= this->_super->size()); } inline auto get(const size_type k) const noexcept(NO_EXCEPT) { k = this->_super->_positivize_index(k); assert(0 <= k && k < this->size()); return this->_super->get(this->_begin + k); } inline auto operator[](const size_type k) const noexcept(NO_EXCEPT) { return this->get(k); } inline value_type kth_smallest(const size_type k) const noexcept(NO_EXCEPT) { assert(0 <= k && k < this->size()); return this->_super->base::kth_smallest(this->_begin, this->_end, k); } inline auto kth_smallest_element(const size_type k) const noexcept(NO_EXCEPT) { if(k == this->size()) return this->end(); assert(0 <= k && k < this->size()); return std::ranges::next(this->_super->begin(), this->_super->base::kth_smallest_index(this->_begin, this->_end, k)); } inline value_type kth_largest(const size_type k) const noexcept(NO_EXCEPT) { assert(0 <= k && k < this->size()); return this->_super->base::kth_largest(this->_begin, this->_end, k); } inline auto kth_largest_element(const size_type k) const noexcept(NO_EXCEPT) { if(k == this->size()) return this->end(); assert(0 <= k && k < this->size()); return std::ranges::next(this->_super->begin(), this->_super->base::kth_largest_index(this->_begin, this->_end, k)); } inline auto min() const noexcept(NO_EXCEPT) { return this->kth_smallest(0); } inline auto max() const noexcept(NO_EXCEPT) { return this->kth_largest(0); } // (r-l)/2 th smallest (0-origin) inline auto median() const noexcept(NO_EXCEPT) { return this->kth_smallest(this->size() / 2); } inline value_type sum_in_range(const value_type& x, const value_type& y) const noexcept(NO_EXCEPT) { return this->_super->base::sum_in_range(this->_begin, this->_end, x, y); } inline value_type sum_under(const value_type& v) const noexcept(NO_EXCEPT) { return this->_super->base::sum_under(this->_begin, this->_end, v); } inline value_type sum_over(const value_type& v) const noexcept(NO_EXCEPT) { return this->_super->base::sum_over(this->_begin, this->_end, v); } inline value_type sum_or_under(const value_type& v) const noexcept(NO_EXCEPT) { return this->_super->base::sum_or_under(this->_begin, this->_end, v); } inline value_type sum_or_over(const value_type& v) const noexcept(NO_EXCEPT) { return this->_super->base::sum_or_over(this->_begin, this->_end, v); } inline value_type sum(const value_type& x, const value_type& y) const noexcept(NO_EXCEPT) { return this->_super->base::sum_in_range(this->_begin, this->_end, x, y); } inline value_type sum() const noexcept(NO_EXCEPT) { return this->_super->base::sum(this->_begin, this->_end); } template<comparison com> inline auto sum(const value_type& v) const noexcept(NO_EXCEPT) { if constexpr(com == comparison::under) return this->sum_under(v); if constexpr(com == comparison::over) return this->sum_over(v); if constexpr(com == comparison::or_under) return this->sum_or_under(v); if constexpr(com == comparison::or_over) return this->sum_or_over(v); assert(false); } inline auto count_in_range(const value_type& x, const value_type& y) const noexcept(NO_EXCEPT) { return this->_super->base::count_in_range(this->_begin, this->_end, x, y); } inline auto count_equal_to(const value_type& v) const noexcept(NO_EXCEPT) { return this->_super->base::count_equal_to(this->_begin, this->_end, v); } inline auto count_under(const value_type& v) const noexcept(NO_EXCEPT) { return this->_super->base::count_under(this->_begin, this->_end, v); } inline auto count_over(const value_type& v) const noexcept(NO_EXCEPT) { return this->_super->base::count_over(this->_begin, this->_end, v); } inline auto count_or_under(const value_type& v) const noexcept(NO_EXCEPT) { return this->_super->base::count_or_under(this->_begin, this->_end, v); } inline auto count_or_over(const value_type& v) const noexcept(NO_EXCEPT) { return this->_super->base::count_or_over(this->_begin, this->_end, v); } template<comparison com = comparison::equal_to> inline auto count(const value_type& v) const noexcept(NO_EXCEPT) { if constexpr(com == comparison::equal_to) return this->count_equal_to(v); if constexpr(com == comparison::under) return this->count_under(v); if constexpr(com == comparison::over) return this->count_over(v); if constexpr(com == comparison::or_under) return this->count_or_under(v); if constexpr(com == comparison::or_over) return this->count_or_over(v); assert(false); } inline auto next_element(const value_type& v, const size_type k = 0) const noexcept(NO_EXCEPT) { return this->kth_smallest_element(std::clamp(this->count_under(v) + k, size_type{ 0 }, this->size())); } inline auto prev_element(const value_type& v, const size_type k = 0) const noexcept(NO_EXCEPT) { return this->kth_largest_element(std::clamp(this->count_over(v) - k, size_type{ 0 }, this->size())); } inline std::optional<value_type> next(const value_type& v, const size_type k = 0) const noexcept(NO_EXCEPT) { return this->_super->base::next(this->_begin, this->_end, v, k); } inline std::optional<value_type> prev(const value_type& v, const size_type k = 0) const noexcept(NO_EXCEPT) { return this->_super->base::prev(this->_begin, this->_end, v, k); } }; inline auto kth_smallest(const size_type k) const noexcept(NO_EXCEPT) { return this->range().kth_smallest(k); } inline auto kth_smallest_element(const size_type k) const noexcept(NO_EXCEPT) { return this->range().kth_smallest_element(k); } inline auto kth_largest(const size_type k) const noexcept(NO_EXCEPT) { return this->range().kth_largest(k); } inline auto kth_largest_element(const size_type k) const noexcept(NO_EXCEPT) { return this->range().kth_largest_element(k); } inline auto min() const noexcept(NO_EXCEPT) { return this->range().kth_smallest(0); } inline auto max() const noexcept(NO_EXCEPT) { return this->range().kth_largest(0); } // (size)/2 th smallest (0-origin) inline auto median() const noexcept(NO_EXCEPT) { return this->range().median(); } inline auto sum_in_range(const value_type& x, const value_type& y) const noexcept(NO_EXCEPT) { return this->range().sum_in_range(x, y); } inline auto sum_under(const value_type& v) const noexcept(NO_EXCEPT) { return this->range().sum_under(v); } inline auto sum_over(const value_type& v) const noexcept(NO_EXCEPT) { return this->range().sum_over(v); } inline auto sum_or_under(const value_type& v) const noexcept(NO_EXCEPT) { return this->range().sum_or_under(v); } inline auto sum_or_over(const value_type& v) const noexcept(NO_EXCEPT) { return this->range().sum_or_over(v); } inline auto sum(const value_type& x, const value_type& y) const noexcept(NO_EXCEPT) { return this->range().sum_in_range(x, y); } inline auto sum() const noexcept(NO_EXCEPT) { return this->range().sum(); } template<comparison com> inline auto sum(const value_type& v) const noexcept(NO_EXCEPT) { return this->range().template sum<com>(v); } inline auto count_in_range(const value_type& x, const value_type& y) const noexcept(NO_EXCEPT) { return this->range().count_in_range(x, y); } inline auto count_equal_to(const value_type& v) const noexcept(NO_EXCEPT) { return this->range().count_equal_to(v); } inline auto count_under(const value_type& v) const noexcept(NO_EXCEPT) { return this->range().count_under(v); } inline auto count_over(const value_type& v) const noexcept(NO_EXCEPT) { return this->range().count_over(v); } inline auto count_or_under(const value_type& v) const noexcept(NO_EXCEPT) { return this->range().count_or_under(v); } inline auto count_or_over(const value_type& v) const noexcept(NO_EXCEPT) { return this->range().count_or_over(v); } template<comparison com = comparison::equal_to> inline auto count(const value_type& v) const noexcept(NO_EXCEPT) { return this->range().template count<com>(v); } inline auto next_element(const value_type& v) const noexcept(NO_EXCEPT) { return this->range().next_element(v); } inline auto prev_element(const value_type& v) const noexcept(NO_EXCEPT) { return this->range().prev_element(v); } inline auto next(const value_type& v, const size_type k = 0) const noexcept(NO_EXCEPT) { return this->range().next(v, k); } inline auto prev(const value_type& v, const size_type k = 0) const noexcept(NO_EXCEPT) { return this->range().prev(v, k); } struct iterator; protected: using iterator_interface = internal::container_iterator_interface<value_type, const wavelet_matrix, const iterator>; public: struct iterator : iterator_interface { using iterator_interface::iterator_interface; }; inline auto begin() const noexcept(NO_EXCEPT) { return iterator(this, 0); } inline auto end() const noexcept(NO_EXCEPT) { return iterator(this, this->size()); } inline auto rbegin() const noexcept(NO_EXCEPT) { return std::make_reverse_iterator(this->end()); } inline auto rend() const noexcept(NO_EXCEPT) { return std::make_reverse_iterator(this->begin()); } }; template<std::integral T, template<class...> class MapTemplate> struct compressed_wavelet_matrix : protected wavelet_matrix<u32, MapTemplate> { using value_type = T; using size_type = internal::size_t; protected: using core = wavelet_matrix<u32, MapTemplate>; using compresser = compressed<value_type, valarray<u32>>; compresser _comp; public: compressed_wavelet_matrix() = default; template<std::ranges::input_range R> explicit compressed_wavelet_matrix(R&& range) noexcept(NO_EXCEPT) : compressed_wavelet_matrix(ALL(range)) {} template<std::input_iterator I, std::sentinel_for<I> S> compressed_wavelet_matrix(I first, S last) noexcept(NO_EXCEPT) { this->build(first, last); } template<std::input_iterator I, std::sentinel_for<I> S> inline void build(I first, S last) noexcept(NO_EXCEPT) { this->_comp = compresser(first, last); this->core::build(ALL(this->_comp)); } inline auto get(const size_type k) const noexcept(NO_EXCEPT) { return this->_comp.value(this->core::get(k)); } inline auto operator[](const size_type k) const noexcept(NO_EXCEPT) { return this->_comp.value(this->core::get(k)); } struct iterator; struct range_reference; template<uni::interval_notation rng = uni::interval_notation::right_open> inline auto range(const size_type l, const size_type r) const noexcept(NO_EXCEPT) { if constexpr(rng == uni::interval_notation::right_open) return range_reference(this, l, r); if constexpr(rng == uni::interval_notation::left_open) return range_reference(this, l + 1, r + 1); if constexpr(rng == uni::interval_notation::open) return range_reference(this, l + 1, r); if constexpr(rng == uni::interval_notation::closed) return range_reference(this, l, r + 1); } inline auto range() const noexcept(NO_EXCEPT) { return range_reference(this, 0, this->size()); } inline auto operator()(const size_type l, const size_type r) const noexcept(NO_EXCEPT) { return range_reference(this, l, r); } inline auto subseq(const size_type p, const size_type c) const noexcept(NO_EXCEPT) { return range_reference(this, p, p+c); } inline auto subseq(const size_type p) const noexcept(NO_EXCEPT) { return range_reference(this, p, this->size()); } struct range_reference : internal::range_reference<const compressed_wavelet_matrix> { range_reference(const compressed_wavelet_matrix *const super, const size_type l, const size_type r) noexcept(NO_EXCEPT) : internal::range_reference<const compressed_wavelet_matrix>(super, super->_positivize_index(l), super->_positivize_index(r)) { assert(0 <= this->_begin && this->_begin <= this->_end && this->_end <= this->_super->size()); } private: inline auto _range() const noexcept(NO_EXCEPT) { return this->_super->core::range(this->_begin, this->_end); } public: inline auto get(const size_type k) const noexcept(NO_EXCEPT) { return this->_super->_comp.value(this->_range().get(k)); } inline auto operator[](const size_type k) const noexcept(NO_EXCEPT) { return this->get(k); } inline auto kth_smallest(const size_type k) const noexcept(NO_EXCEPT) { return this->_super->_comp.value(this->_range().kth_smallest(k)); } inline auto kth_smallest_element(const size_type k) const noexcept(NO_EXCEPT) { return std::ranges::next(this->_super->begin(), std::ranges::distance(this->_super->core::begin(), this->_range().kth_smallest_element(k))); } inline auto kth_largest(const size_type k) const noexcept(NO_EXCEPT) { return this->_super->_comp.value(this->_range().kth_largest(k));} inline auto kth_largest_element(const size_type k) const noexcept(NO_EXCEPT) { return std::ranges::next(this->_super->begin(), std::ranges::distance(this->_super->core::begin(), this->_range().kth_largest_element(k))); } inline auto min() const noexcept(NO_EXCEPT) { return this->kth_smallest(0); } inline auto max() const noexcept(NO_EXCEPT) { return this->kth_largest(0); } // (r-l)/2 th smallest (0-origin) inline auto median() const noexcept(NO_EXCEPT) { return this->kth_smallest(this->size() / 2); } inline auto count_in_range(const value_type& x, const value_type& y) const noexcept(NO_EXCEPT) { return this->_range().count_in_range(this->_super->_comp.rank(x), this->_super->_comp.rank2(y)); } inline size_type count_equal_to(const value_type& v) const noexcept(NO_EXCEPT) { const auto p = this->_super->_comp.rank(v); const auto q = this->_super->_comp.rank2(v); if(p != q) return 0; return this->_range().count_equal_to(p); } inline auto count_under(const value_type& v) const noexcept(NO_EXCEPT) { return this->_range().count_under(this->_super->_comp.rank(v)); } inline auto count_over(const value_type& v) const noexcept(NO_EXCEPT) { return this->_range().count_over(this->_super->_comp.rank2(v)); } inline auto count_or_under(const value_type& v) const noexcept(NO_EXCEPT) { return this->_range().count_or_under(this->_super->_comp.rank2(v)); } inline auto count_or_over(const value_type& v) const noexcept(NO_EXCEPT) { return this->_range().count_or_over(this->_super->_comp.rank(v)); } template<comparison com = comparison::equal_to> inline auto count(const value_type& v) const noexcept(NO_EXCEPT) { if constexpr(com == comparison::equal_to) return this->count_equal_to(v); if constexpr(com == comparison::under) return this->count_under(v); if constexpr(com == comparison::over) return this->count_over(v); if constexpr(com == comparison::or_under) return this->count_or_under(v); if constexpr(com == comparison::or_over) return this->count_or_over(v); assert(false); } inline auto next_element(const value_type& v, const size_type k = 0) const noexcept(NO_EXCEPT) { return this->kth_smallest_element(std::clamp(this->_range().count_under(this->_super->_comp.rank(v) + k), size_type{ 0 }, this->size())); } inline auto prev_element(const value_type& v, const size_type k = 0) const noexcept(NO_EXCEPT) { return this->kth_largest_element(std::clamp(this->_range().count_over(this->_super->_comp.rank2(v) + k), size_type{ 0 }, this->size())); } inline std::optional<value_type> next(const value_type& v, const size_type k = 0) const noexcept(NO_EXCEPT) { const auto res = this->_range().next(this->_super->_comp.rank(v), k); if(res.has_value()) return this->_super->_comp.value(res.value()); return {}; } inline std::optional<value_type> prev(const value_type& v, const size_type k = 0) const noexcept(NO_EXCEPT) { const auto res = this->_range().prev(this->_super->_comp.rank2(v), k); if(res.has_value()) return this->_super->_comp.value(res.value()); return {}; } }; inline auto kth_smallest(const size_type k) const noexcept(NO_EXCEPT) { return this->range().kth_smallest(k); } inline auto kth_smallest_element(const size_type k) const noexcept(NO_EXCEPT) { return this->range().kth_smallest_element(k); } inline auto kth_largest(const size_type k) const noexcept(NO_EXCEPT) { return this->range().kth_largest(k); } inline auto kth_largest_element(const size_type k) const noexcept(NO_EXCEPT) { return this->range().kth_largest_element(k); } inline auto min() const noexcept(NO_EXCEPT) { return this->range().kth_smallest(0); } inline auto max() const noexcept(NO_EXCEPT) { return this->range().kth_largest(0); } inline auto median() const noexcept(NO_EXCEPT) { return this->range().median(); } inline auto count_in_range(const value_type& x, const value_type& y) const noexcept(NO_EXCEPT) { return this->range().count_in_range(x, y); } inline auto count_equal_to(const value_type& v) const noexcept(NO_EXCEPT) { return this->range().count_equal_to(v); } inline auto count_under(const value_type& v) const noexcept(NO_EXCEPT) { return this->range().count_under(v); } inline auto count_over(const value_type& v) const noexcept(NO_EXCEPT) { return this->range().count_over(v); } inline auto count_or_under(const value_type& v) const noexcept(NO_EXCEPT) { return this->range().count_or_under(v); } inline auto count_or_over(const value_type& v) const noexcept(NO_EXCEPT) { return this->range().count_or_over(v); } template<comparison com = comparison::equal_to> inline auto count(const value_type& v) const noexcept(NO_EXCEPT) { return this->range().template count<com>(v); } inline auto next_element(const value_type& v) const noexcept(NO_EXCEPT) { return this->range().next_element(v); } inline auto prev_element(const value_type& v) const noexcept(NO_EXCEPT) { return this->range().prev_element(v); } inline auto next(const value_type& v, const size_type k = 0) const noexcept(NO_EXCEPT) { return this->range().next(v, k); } inline auto prev(const value_type& v, const size_type k = 0) const noexcept(NO_EXCEPT) { return this->range().prev(v, k); } struct iterator; protected: using iterator_interface = internal::container_iterator_interface<value_type, const compressed_wavelet_matrix, const iterator>; public: struct iterator : iterator_interface { using iterator_interface::iterator_interface; }; inline auto begin() const noexcept(NO_EXCEPT) { return iterator(this, 0); } inline auto end() const noexcept(NO_EXCEPT) { return iterator(this, this->size()); } inline auto rbegin() const noexcept(NO_EXCEPT) { return std::make_reverse_iterator(this->end()); } inline auto rend() const noexcept(NO_EXCEPT) { return std::make_reverse_iterator(this->begin()); } }; template<std::ranges::input_range R> explicit wavelet_matrix(R&&) -> wavelet_matrix<std::ranges::range_value_t<R>>; template<std::input_iterator I, std::sentinel_for<I> S> explicit wavelet_matrix(I, S) -> wavelet_matrix<std::iter_value_t<I>>; template<std::ranges::input_range R> explicit compressed_wavelet_matrix(R&&) -> compressed_wavelet_matrix<std::ranges::range_value_t<R>>; template<std::input_iterator I, std::sentinel_for<I> S> explicit compressed_wavelet_matrix(I, S) -> compressed_wavelet_matrix<std::iter_value_t<I>>; } // namespace uni #line 26 "include/data_structures.hpp"