1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233 | #pragma once
#include <cstdint><--- Include file: not found. Please note: Cppcheck does not need standard library headers to get proper results.
#include <optional><--- Include file: not found. Please note: Cppcheck does not need standard library headers to get proper results.
#include <type_traits><--- Include file: not found. Please note: Cppcheck does not need standard library headers to get proper results.
#include <iterator><--- Include file: not found. Please note: Cppcheck does not need standard library headers to get proper results.
#include <concepts><--- Include file: not found. Please note: Cppcheck does not need standard library headers to get proper results.
#include <ranges><--- Include file: not found. Please note: Cppcheck does not need standard library headers to get proper results.
#include "internal/dev_env.hpp"
#include "internal/types.hpp"
#include "internal/concepts.hpp"
#include "global/constants.hpp"
#include "data_structure/segment_tree.hpp"
#include "action/range_set_range_sum.hpp"
#include "action/range_add_range_sum.hpp"
#include "action/range_sum.hpp"
#include "action/helpers.hpp"
#include "algebraic/combined.hpp"
#include "algebraic/addition.hpp"
#include "algebraic/minimum.hpp"
namespace uni {
namespace internal {
template<
template<class...> class Tree,
template<class...> class Action
>
requires actions::internal::action<Action<internal::size_t>>
struct set_adaptor_impl {
using size_type = internal::size_t;
using key_type = internal::size_t;
using value_type = internal::size_t;
protected:
using impl_data_type = algebraic::combined<algebraic::addition<value_type>, algebraic::minimum<value_type>>;
using impl_tree =
Tree<
std::conditional_t<
internal::available_with<
Tree,
Action<impl_data_type>
>,
Action<impl_data_type>,
actions::range_sum<impl_data_type>
>
>;<--- Syntax Error: AST broken, binary operator '>' doesn't have two operands.
impl_tree _data;
size_type _elem = 0;
public:
set_adaptor_impl(const size_type sup) noexcept(NO_EXCEPT) : _data(sup) {};<--- Struct 'set_adaptor_impl' has a constructor with 1 argument that is not explicit. [+]Struct 'set_adaptor_impl' has a constructor with 1 argument that is not explicit. Such, so called "Converting constructors", should in general be explicit for type safety reasons as that prevents unintended implicit conversions.
inline size_type size() const noexcept(NO_EXCEPT) { return this->_data.fold(); }
inline bool empty() const noexcept(NO_EXCEPT) { return this->size() == 0; }
inline size_type count(const key_type& k) const noexcept(NO_EXCEPT) { return this->_data.get(k).val()->first.val(); }
inline bool contains(const key_type& k) const noexcept(NO_EXCEPT) { return this->_data.get(k).val()->first.val() > 0; }
inline value_type mex(const key_type& base = 0) const noexcept(NO_EXCEPT) {
return this->_data.max_right(base, [](const auto& p) { return p.val()->second.val() > 0; });
}
inline std::optional<value_type> next(const key_type& k, const size_type count = 0) const noexcept(NO_EXCEPT) {
const auto v = this->_data.max_right(k, [count](const auto& p) { return p.val()->first.val() <= count; });
if(v == this->_data.size()) return {};
return { v };
}
inline std::optional<value_type> prev(const key_type& k, const size_type count = 0) const noexcept(NO_EXCEPT) {
const auto v = this->_data.min_left(k + 1, [count](const auto& p) { return p.val()->first.val() <= count; });
if(v == 0) return {};
return { v - 1 };
}
inline auto kth_smallest(const size_type k) const noexcept(NO_EXCEPT) { return this->next(0, k); }
inline auto kth_largest(const size_type k) const noexcept(NO_EXCEPT) { return this->prev(this->_data.size()-1, k); }
inline value_type min() const noexcept(NO_EXCEPT) { return this->kth_smallest(0); }
inline value_type max() const noexcept(NO_EXCEPT) { return this->kth_largest(0); }
inline size_type count_under(const value_type& v) const noexcept(NO_EXCEPT) { return this->_data.fold(0, v).val()->first.val(); }
inline size_type count_over(const value_type& v) const noexcept(NO_EXCEPT) { return this->_data.fold(v+1, this->_data.size()).val()->first.val(); }
inline size_type count_or_under(const value_type& v) const noexcept(NO_EXCEPT) { return this->_data.fold(0, v+1).val()->first.val(); }
inline size_type count_or_over(const value_type& v) const noexcept(NO_EXCEPT) { return this->_data.fold(v, this->_data.size()).val()->first.val(); }
template<comparison com = comparison::equal_to>
inline size_type count(const value_type& v) const noexcept(NO_EXCEPT) {
if constexpr(com == comparison::eq) return this->count(v);
if constexpr(com == comparison::under) return this->count_under(v);
if constexpr(com == comparison::over) return this->count_over(v);
if constexpr(com == comparison::or_under) return this->count_or_under(v);
if constexpr(com == comparison::or_over) return this->count_or_over(v);
assert(false);
}
inline const auto& _debug() const noexcept(NO_EXCEPT) { return this->_data; }
};
};
template<template<class...> class Tree = uni::segment_tree>
struct set_adaptor : internal::set_adaptor_impl<Tree, actions::range_set_range_sum> {
using size_type = internal::size_t;
using key_type = internal::size_t;
using value_type = size_type;
protected:
using Base = internal::set_adaptor_impl<Tree, actions::range_set_range_sum>;
using impl_data_type = typename Base::impl_data_type;
public:
set_adaptor() noexcept(NO_EXCEPT) = default;
set_adaptor(const size_type sup) noexcept(NO_EXCEPT) : Base(sup) {};<--- Struct 'set_adaptor' has a constructor with 1 argument that is not explicit. [+]Struct 'set_adaptor' has a constructor with 1 argument that is not explicit. Such, so called "Converting constructors", should in general be explicit for type safety reasons as that prevents unintended implicit conversions.
template<std::input_iterator I, std::sentinel_for<I> S>
set_adaptor(I first, S last) noexcept(NO_EXCEPT) : set_adaptor(*std::ranges::max_element(first, last) + 1) {
valarray<bool> bits(this->_data.size());
REP(itr, first, last) {
assert(0 <= *itr && *itr < this->_data.size());
bits[*itr] = true;
}
this->build_from_bits(ALL(bits));
};
template<std::ranges::input_range R>
set_adaptor(R&& range) noexcept(NO_EXCEPT) : set_adaptor(ALL(range)) {}<--- Struct 'set_adaptor' has a constructor with 1 argument that is not explicit. [+]Struct 'set_adaptor' has a constructor with 1 argument that is not explicit. Such, so called "Converting constructors", should in general be explicit for type safety reasons as that prevents unintended implicit conversions.
template<std::input_iterator I, std::sentinel_for<I> S>
inline auto& build_from_bits(I first, S last) noexcept(NO_EXCEPT) {
if constexpr(std::sized_sentinel_for<S, I>) {
assert(std::ranges::distance(first, last) == this->_data.size());
}
this->_data.assign(first, last);
return *this;
};
template<std::ranges::input_range R>
inline auto& build_from_bits(R&& range) noexcept(NO_EXCEPT) {
return this->build_from_bits(ALL(range));
}
inline bool insert(const key_type& k) noexcept(NO_EXCEPT) {
assert(0 <= k && k < this->_data.size());<--- Unsigned positive
const bool res = !this->_data.get(k).val()->first.val();
if(res) this->_data.set(k, impl_data_type{ 1 });
return res;
}
inline bool remove(const key_type& k) noexcept(NO_EXCEPT) {
assert(0 <= k && k < this->_data.size());<--- Unsigned positive
const bool res = this->_data.get(k).val()->first.val();
if(res) this->_data.set(k, impl_data_type{ 0 });
return res;
}
};
template<template<class...> class Tree = uni::segment_tree, std::integral Size = std::int64_t>
struct multiset_adaptor : internal::set_adaptor_impl<Tree, actions::range_add_range_sum> {
using size_type = Size;
using key_type = internal::size_t;
using value_type = key_type;
private:
using Base = internal::set_adaptor_impl<Tree, actions::range_add_range_sum>;
using impl_data_type = typename Base::impl_data_type;
public:
multiset_adaptor(const size_type sup) noexcept(NO_EXCEPT) : Base(sup) {};<--- Struct 'multiset_adaptor' has a constructor with 1 argument that is not explicit. [+]Struct 'multiset_adaptor' has a constructor with 1 argument that is not explicit. Such, so called "Converting constructors", should in general be explicit for type safety reasons as that prevents unintended implicit conversions.
template<std::input_iterator I, std::sentinel_for<I> S>
multiset_adaptor(I first, S last) noexcept(NO_EXCEPT) : Base(*std::ranges::max_element(first, last) + 1) {
vector<size_type> cnts(this->_data.size());
REP(itr, first, last) {
assert(0 <= *itr && *itr < this->_data.size());
cnts[*itr]++;
}
this->build_from_histogram(ALL(cnts));
};
template<std::ranges::input_range R>
multiset_adaptor(R&& range) noexcept(NO_EXCEPT) : multiset_adaptor(ALL(range)) {}<--- Struct 'multiset_adaptor' has a constructor with 1 argument that is not explicit. [+]Struct 'multiset_adaptor' has a constructor with 1 argument that is not explicit. Such, so called "Converting constructors", should in general be explicit for type safety reasons as that prevents unintended implicit conversions.
template<std::input_iterator I, std::sentinel_for<I> S>
inline auto& build_from_histogram(I first, S last) noexcept(NO_EXCEPT) {
if constexpr(std::sized_sentinel_for<S, I>) {
assert(std::ranges::distance(first, last) == this->_data.size());
}
this->_data.assign(first, last);
return *this;
};
template<std::ranges::input_range R>
inline auto& build_from_histogram(R&& range) noexcept(NO_EXCEPT) {
return this->build_from_histogram(ALL(range));
}
inline void insert(const key_type& k, const size_type count = 1) noexcept(NO_EXCEPT) {
assert(0 <= k && k < this->_data.size());<--- Unsigned positive
assert(0 <= count);
const auto cur = this->_data.get(k);
const auto num = cur.val()->first.val();
this->_data.set(k, impl_data_type{ num + count });
this->_elem += count;
}
inline void remove(const key_type& k, const size_type count = 1) noexcept(NO_EXCEPT) {
assert(0 <= k && k < this->_data.size());<--- Unsigned positive
const auto cur = this->_data.get(k);
const auto num = cur.val()->first.val();
assert(0 <= count && count <= num);
this->_data.set(k, impl_data_type{ num - count });
}
};
} // namespace uni
|